
 

 

 

 

 
Syllabus: 

Module 1: 

Overview of Internet of Things: 

 

IoT Conceptual Framework, IoT Architectural View, Technology Behind IoT, 

Sources of IoT,M2M communication, Examples of IoT. Modified OSI Model 

for the IoT/M2M Systems, data enrichment, data consolidation and device 

management at IoT/M2M Gateway, web communication protocols used by 

connected IoT/M2M devices, Message communication protocols (CoAP-SMS, 

CoAPMQ, MQTT,XMPP) for IoT/M2M devices. 
 

Definition: 

The Internet of Things (IoT) is a system of interrelated computing devices, 

mechanical and digital machines, objects, animals or people that are 

provided with unique identifiers and the ability to transfer data over a 

network without requiring human-to-human or human-to-computer 

interaction. 
 

OR 

The Internet of things refers to a type of network to connect anything with 

the Internet based on stipulated protocols through information sensing 

equipments to conduct information exchange and communications in order 

to achieve smart recognitions, positioning, tracing, monitoring, and 

administration. 

Characteristics of IoT: 

The fundamental characteristics of IoT are as follows: 

 Interconnectivity: In IoT, anything can be interconnected with the 

global information and communication infrastructure. 

 Things-related services: The IoT is capable of providing thing-related 

services within the constraints, such as privacy protection and semantic 

consistency between physical things and their associated virtual things. 

In order to provide thing-related services within the constraints of  

things, both the technologies in physical world and information world 

will change. 

 Heterogeneity: The devices in the IoT are heterogeneous as based on 

different hardware platforms and networks. They can interact with other 

devices or service platforms through different networks. 

 Dynamic changes: The state of devices change dynamically, e.g., 

sleeping and waking up, connected and/or disconnected as well as the 
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context of devices including location and speed. Moreover, the number of 

devices can change dynamically. 

 Enormous scale: The number of devices that need to be managed and 

that communicate with each other will be at least an order of magnitude 

larger than the devices connected to the current Internet 

 Safety: As benefits are more with the usage, safety becomes an ad joint 

issue. This includes the safety of personal data and the safety of physical 

well-being. Securing the endpoints, the networks, and the data moving 

across all of it means creating a security paradigm that will scale. 

 Connectivity: Connectivity enables network accessibility and 

compatibility. Accessibility is getting on a network while compatibility 

provides the common ability to consume and produce data. 

Basic IoT Architectural View [only for understanding purpose but  

forms the base for the next topic]: 

IOT architecture consists of different layers of technologies supporting IOT. 
 

Figure1: Architectural view of IoT 

 

 
1. Smart device / sensor layer: 

 The lowest layer is made up of smart objects integrated with sensors. 



 

 

 The sensors enable the interconnection of the physical and digital 

worlds allowing real-time information to be collected and processed. 

 There are various types of sensors for different purposes. 

 The sensors have the capacity to take measurements such as 

temperature, air quality, speed, humidity, pressure, flow, movement and 

electricity etc. In some cases, they may also have a degree of memory, 

enabling them to record a certain number of measurements. 

 A sensor can measure the physical property and convert it into signal 

that can be understood by an instrument. 

 Sensors are grouped according to their unique purpose such as 

environmental sensors, body sensors, home appliance sensors and 

vehicle telemetric sensors, etc. 

 Most sensors require connectivity to the sensor gateways. This can be 

in the form of a Local Area Network (LAN) such as Ethernet and Wi-Fi 

connections or Personal Area Network (PAN) such as Zigbee, Bluetooth 

and Ultra Wideband (UWB). 

 Sensors that use low power and low data rate connectivity, they 

typically form networks commonly known as wireless sensor networks 

(WSNs). 

2. Gateways and Networks: 

 Massive volume of data will be produced by tiny sensors. 

 It requires a robust and high performance wired or wireless network 

infrastructure as a transport medium. 

 Current networks, often tied with very different protocols, have been 

used to support machine-to-machine (M2M) networks and their 

applications. 

 With demand needed to serve a wider range of IOT services and 

applications such as high speed transactional services, context- 

aware applications, etc, multiple networks with various technologies 

and access protocols are needed to work with each other in a 

heterogeneous configuration. 

  These networks can be in the form of a private, public or hybrid 

models and are built to support the communication requirements for 

latency, bandwidth or security. 

 Various gateways (microcontroller, microprocessor...) & gateway 

networks (WI-FI, GSM, GPRS…) are shown in figure 1 

3. Management Service Layer: 

 The management service renders the processing of information 

possible through analytics, security controls, process modeling and 

management of devices. 

 One of the important features of the management service layer is the 

business and process rule engines. 



 

 

 IOT brings connection and interaction of objects and systems 

together providing information in the form of events or contextual 

data such as temperature of goods, current location and traffic data. 

 Some of these events require filtering or routing to post processing 

systems such as capturing of periodic sensory data, while others 

require response to the immediate situations such as reacting to 

emergencies on patient‟s health conditions. 

 The rule engines support the formulation of decision logics and 

trigger interactive and automated processes to enable a more 

responsive IOT system. In the area of analytics, various analytics 

tools are used to extract relevant information from massive amount 

of raw data and to be processed at a much faster rate. 

4. Application Layer: 

The IoT application covers “smart” environments/spaces in domains 

such as: Transportation, Building, City, Lifestyle, Retail, Agriculture, 

Factory, Supply chain, Emergency, Healthcare, User interaction, 

Culture and tourism, Environment and Energy. 

IoT Architectural View: [As per VTU Syllabus] 

The IoT system is defined in different levels called as tiers. A model enables 

the conceptualisation of the framework. 

A reference model can be used to depict the building blocks, successive 

interactions and integration. 

The diagram below depicts the CISCO presentation of a reference model 

comprising of 7 levels and the functions of each level. 

 

Features of the architecture: 



 

 

 The architecture serves as a reference in the applications of IoT in 

services and business processes. 

 A set of sensors which are smart, capture the data, perform necessary 

data element analysis and transformation as per device application 

framework and connect directly to a communication manager. 

 The communication management subsystem consists of protocol 

handlers, message routers and access management. 

 Data routes from gateway through the Internet and data centre to the 

application server or enterprise server which acquires that data. 

 Organisation and analysis subsystems enable the services, business 

processes, enterprise integration and complex processes. 

 
IEEE P2413 

 
IEEE suggested P2413 standard for architecture of IoT. It is a reference 

architecture which builds upon the reference models. This reference model 

defines the relationship between various IoT Applications  like 

Transportation and Health Care. 

The characteristics of this IEEE standard are as follows: 

 Follows top- down approach. 

 Does not define a new architecture but reinvent existing architectures 

congruent with it 

 Gives a blue print for data abstraction. 

 Specifies abstract IoT domain for various IoT domains. 

 Recommends quality „quadruple‟ trust that includes protection, security, 

privacy and safety. 

 Addresses the documentation of data. 

 Strives for mitigating architecture divergence. 

 
IoT Conceptual Frame Work: 

*Explain the concept of operation in an IoT System. 

*Explain the Oracle Conceptual Frame work of IoT 

*Explain the IBM Conceptual Frame work of IoT 

An IoT System has multiple levels as seen in the basic architecture. It can  

be explained using the equations given below: 

Physical Object+ Controller, Sensor & Actuators+ Internet= IoT ---------- (1) 

IoT is an internetwork of devices and physical objects. The operation of  

these devices is could be to gather the information or acquire the parameter 

through a sensor or a controller and an actuator to serve the application. 



 

 

Ex: A series of street lights communication data to the group controller 

which connects t the central server using the Internet. 

Gather + Enrich + Stream + Manage + Acquire + Organise& Analyse 

=IoT with Connectivity to Data enter, Enterprise or Cloud -------------------- (2) 

The equation (2) represents the conceptual frame work and architecture 

presented by Oracle as in the figure below. 

The steps and processes that this architecture follows to communicate the 

data at different levels in IoT are: 

 

1. Level 1: The data of the devices (things) using sensors are gathered from 

Internet. 

2. Level 2: A sensor connected to the Gateway functions as a smart sensor. 

The data is then enriched-transcoding at the gateway. 

3. Level 3: A communication management subsystem sends and receives 

the data streams. 

4. Level 4: The device management, identity management and access 

management subsystems receive the device‟s data. 

5. Level 5: The data store or database acquires the data. 

6. Level 6: Data routed from the devices and things is organised and 

analysed. 

Gather + Consolidate + Connect + Assemble + Manage& Analyse = IoT 

With Connectivity to Cloud Services --------------------------------------------------------- (3) 

The equation (3) presents an alternate conceptual approach for a complex 

system proposed by IBM. The framework is as shown below. 



 

 

 

 
 

The steps for the actions and communication of data at the successive levels 

of IoT are as given below: 

1. Levels 1 and 2 consist of a sensor network to gather and consolidate the 

data. 

2. The gateway at level2 communicates the data streams between level 2 

and 3. The system uses a communication management subsystem at 

level 3. 

3. An information service consists of connect, collect, assemble and manage 

subsystems at levels 3 and 4. 

4. Real time series analysis, data analytics and intelligence subsystems are 

at level 4 & 5. A cloud infrastructure, a data store or database acquires 

the data at level 5. 

Various conceptual frameworks for IoT find number of applications. Ex: 

M2M communications, wearable devices, smart objects, smart automation of 

the house etc... 

Smart systems use the user interfaces (UIs), Application Programming 

Interfaces(APIs), identification data, sensor data and communication ports  

to process the data and communicate it to the next level. 

Technology behind IoT: 

The following entities provide a diverse technology environment and are 

examples of technologies involved in IoT: 

 Hardware: A variety of Hardware play a vital role in communicating the 

parameters from the IoT to the Publisher or Subscriber.

 The hardware to communicate requires an Integrated Development 

Environment (IDE) for developing device software, firm ware and APIs.



 

 

 Protocols are a means to effectively put the data into format. Ex: RPL, 

CoAP, Restful, HTTP, MQTT, XMPP.

 Communication: Media of information transfer- Power line 

Ethernet,RFID,NFC,6LowPAN,UWB,ZigBee,Bluetooth,WiFi,WiMAX,2G3G

/4G. 

 Network Backbone: IPV4, IPV6, UDP and 6LowPAN.

 Software: RIOT OS, Contiki OS, Thingsquare, Mist Firm ware, Eclipse IoT

 Internetwork Cloud platforms/ Data Centre: Sense, ThingsWorx, Nimbits

 Machine Learning Algorithm and Software 

Server End Technology:

IoT Servers are application servers, enterprise servers, cloud servers, data 

centres and databases. 

Servers offer the following components: 

1. Online Platforms 

2. Devices identification, identity management and their access 

management. 

3. Data accruing aggregation, integration, organising and analysing 

4. Use of web applications, services and business process. 

Major Components of IoT Systems: 

Major Components of IoT devices are as follows: 

1. Physical Object with embedded software into hardware - Sensors 

and control units. Sensors are electronic devices that sense the 

physical environment. Control units commonly are the microcontroller 

units or a custom chip that can comprise of a processor, memory and 

several units which are interfaced together. 

2. Hardware consisting of a microcontroller, firmware, sensors, control 

unit, actuators and communication module. 

3. Communication module: Software consisting of device APIs and 

device interface for middleware for creating communication stacks 

using CoAP, LWM2M, IPV4, IPV6 and other protocols. 

4. Software for actions on messages, information and commands which 

the devices receive and then output to the actuators, which enable 

actions such as glowing LEDs, robotic hand movement. 

Sources of IoT: 

Arduino Boards 

• E.g. Arduino Yún 

• Using Microcontroller ATmega32u4 



 

 

• Includes Wi-Fi, Ethernet, USB port, micro-SD card slot and three 

reset buttons 

• Runs Linux 

Intel Galileo board 

• A line of Arduino-certified development boards. 

• Intel x86, Intel SOC X1000 Quark based System-On-Chip 

• Power over Ethernet (PoE) and 6 Analog Inputs 

Beagle Board 

• Very low power requirement 

• Card like computer, Can run Android and Linux 

• Open source Hardware designs and the software for the IoT devices 

are 

Raspberry Pi 

• Wi-Fi-connected device 

• Included code open source RasWIK 

M2M Communication: 

M2M refers to a process of communication of a physical object or device at 

machine with others of same type, mostly for monitoring and control 

purposes. 

M2M to IoT: 

• Technology closely relates to IoT which use smart devices to collect 

data that is transmitted via the Internet to other devices. 

• Close differences lies in M2M uses for device to device communication 

also for coordinated monitoring and control purposes. 

M2M Architecture: 

The architecture consists of three domains: 

 M2M device domain 

 M2M network domain 

 M2M application domain 



 

 

 The device management domain consists of three entities: physical 

devices, communication interface and gateway. 

 Communication interface is a port or a subsystem which receives the 

input from one end sends the data received to another. 

 M2M Network domain consists of M2M server, device identity 

management, data analytics and data & device management similar to 

IoT architecture level. 

 
Examples of IoT: 

 
An example for Smart home automation/ Smart Home application: 

 
 

 Sensors and actuators manage a smart home with an Internet 

connection. Wired and Wireless sensors are incorporated into the 

security sensors, thermostats and many more.

 In the device layer, the devices that are monitored like the temperature, 

lighting, power meter and so on are connected to a sensor.

 The sensor records any change in the operation of the device and 

communicates to the intermediate layer via UWB, GPRS or Wifi.

 Using the data is uploaded into cloud through Internet. With proper 

authentication the user can observe the changes at home.



 

 

 The cloud provides the information to the user by sending an email, and 

SMS, or Push Notifications for which the user could pay the electricity 

bill, telephone bill, switch off the lights or On the lights accordingly.

 This is an example of smart home automation using IoT.

 
An example for Smart City application: 

 

 The IoT technology can be expanded to construct a smart city.

 The feature of this application is that it connects traffic in the city to the 

hospitals to the schools via Internet.

 Layer 1 describes the physical device level. Here sensors are deployed in 

the parking space, hospitals, streets, vehicles, banks, water supply, 

roads, bridges and railroads.

 Layer 2: The data captured from the sensors is integrated and processed 

with the requirement.

 Layer 3: It is meant for central collection services, connected data centres 

and cloud.

 Layer 4: Consists of new innovative applications such as waste 

containers monitoring, WSN for power loss monitoring and to inform the 

concerned organisation.



 

 

Differences between IoT and M2M: 
 

Parameters M2M IoT 

Definition M2M solutions contain a linear 
communication channel between 
various machines that enables 
them to form a work cycle. It‟s 
more of a cause and effect relation 
where one action triggers the other 
machinery into activity. 

IoT can be defined as a system where 
multiple devices communicate with 
each other through sensors and 
digital connectivity. They talk to each 
other, work in tandem, and form a 
combined network of services. 

Interactions M2M refers to communication and 
interaction between machines & 
devices 
Such Interaction can occur via a 
cloud computing Infrastructure 

e.g. devices exchanging 
information through cloud 
infrastructure 

IoT has broader scope than M2M, 
since it comprises broader range of 
interactions, including interactions 
between devices /things , things and 
people, things with applications and 

people with applications. It also 
enables composition of workflows 
comprising all of the above 
interactions 

Interactivity Machine to machine solutions 
operate by triggering responses 
based on an action. It‟s mainly a 
one-way communication. 

The key advantage IoT has over M2M 
solutions is the ability to add 
interactivity amongst devices. In this 
system to and fro communication 
flows freely. There can be countless 
scenarios and combinations. 

Connectivity 
Scope 

M2M solutions rely primarily on 
conventional connection tools like 
wired connection , in wireless wifi , 
cellular , etc 

IoT adds more sophisticated sensors 
into the mix. its result, Internet of 
Things based systems have much 
more flexible and varied connectivity 
options. 

Solutions M2M solutions, because of their 
limited scope, are confined to 
creating a network of machines 
that work in synchronization. 

On the other hand, IoT creates 360° 
solutions that allow for flexible 
responses and multi-level 
communication. 

Communicati 
ons 

Point to point communication 
usually embedded within hardware 
at customer site 

Devices communicate using IP 
networks, incorporating with varying 
communication protocols 

Integration Limited integration option , as 
devices must have corresponding 

communication standards 

Unlimited integration options, but 
requires a solution that can manage 

all the communications 



 

 

IoT/M2M Systems, Layers and Design Standardisation: 

Modified OSI Model for the IoT/ M2M Systems: 

 

 The above diagram refers to the modified 7 layer OSI model for IoT/ 

M2M Systems.

 The modifications are proposed by IETF.

 Each layer proposes the received data and creates a new data stack 

which transfers it to the next layer.

 The processing takes place at the intermediate layers between the 

functional layer to the top layer.

 Device end also receives the data from the application/ service after 

processing.

 This shows a similarity to the operation of the equation 2 w.r.t 

conceptual framework as given below:

Gather + Enrich + Stream + Manage + Acquire + Organise& Analyse 

=IoT with Connectivity to Data enter, Enterprise or Cloud 

ITU-T Reference Model: 

 The diagram below shows the ITU-T Reference Model called as RM1.

 This corresponds to the model with the six layers modified OSI model.

 Layer1: L1 is the device layer and has device and gateway capabilities.

 Layer2:L2 has transport and network capabilities.

 Layer3:L3 is the services and application-support layer. The support 

layer has two types f capabilities- Generic and specific service or 

application support capabilities.

 Top Layer: L4 is for applications and services.

Comparison with the CISCI IoT reference model: 

 L4 capabilities are similar to the Cisco Reference Model and processes 

and applications are of top two levels.



 

 

 L3 functions are similar to that of the middle level function of data 

abstraction, accumulation, analysis and transformation.

 L2 layer capabilities are similar to the connectivity in the Cisco Model.

 L1 device layer capabilities are similar to the physical devices level.
 

ETSI M2M Domain Architecture 
 

 Like ITU-T , ETSI specifies the functional areas, a high level architecture 

and reference model for communicating the data from and to the IoT/ 

M2M devices

 The above diagram shows the ETSI M2M domains and architecture and 

the high level capabilities of each domain.

 It also depicts the architectural correspondence with the 6 layer  

modified OSI model and 4 layer of the ITU-T Reference model.

 The ETSI Network Domain has 6 capabilities and functions:

 M2M Applications 



 

 

 M2M Service Capabilities 

 M2M Management functions 

 Network Management Functions 

 CoRE network ex: 3G and IP Networks 

 Access network ,WLAN and Wi Max. 

 ETSI device and gateway have the following functional units:

 Gateway between M2M area network, CoRE and access network , 

processing M2M service capabilities. 

 M2M area network(Bluetooth, ZigBee, NFC, PAN,LAN) 

 M2M Devices 

 
 Explain M2M ETSI domains and high level architecture for 

applications and services ATMs to bank servers. 

 What are the architecture layers in ITU-T reference model for 

Internet of RFIDs application? 

 What are the architectural layers in IoT? List the applications and 

advantages of IoT. 

Data Enrichment, Data Consolidation and Device Management at 

Gateway: 

 A gateway at the data adaptation layer has several functions. 

 These are data privacy, data security, data enrichment, data 

consolidation, transformation and device management. 

Data Management and Consolidation Gateway: 

 Gateway includes the following functions:

 Transcoding 

 Privacy, Security 

 Integration 

 Compaction and fusion 

 Transcoding: It means conversion and change of protocol, format or 

code using software.

 The gateway renders the web response the web and messages in formats 

and representations required and acceptable at an IoT device.

 IoT device requests are adapted, converted and changed into required 

formats acceptable at the server by the transcoding software.

 Ex. conversion from ASCII to Unicode at the server.

 A transcoding proxy can execute itself on the client system or the 

application server.

 It has conversional, computational and analysing capabilities while the 

gateway has conversion and computational capabilities only.



 

 

 Privacy: The data such as medical records, logistics, and inventories of  

a company may need privacy and protection.

 The following are the components of privacy model:

 Devices and applications identity management 

 Authentication 

 Authorization 

 Trust 

 Reputation 

 A suitable encryption method ensures data privacy. 

 The data is decrypted and analysed and is an input to the application 

service or process. 

 Secure data access: Access to data needs to be secured. The design 

needs to ensure the authentication of a request from a service or 

application. 

 End to end security is a feature which uses a security protocol at each 

layer. 

 Data gathering and Enrichment: IoT applications involve actions such 

as Data gathering(Acquisition), Validation, Storage ,Processing, 

Retention and analysis. 

 Data gathering is to acquire the data from the devices or device 

networks. Four modes of Acquisition are: 

 Polling: Refers to the data sought by addressing the device[Its 

operated like the polling by a computer to access the control of a 

channel to transfer data or to check if there is a data addressed to 

it] 

 Event Based: The data acquired from the device on an event like a 

NFC or a card reader. 

 Scheduled Interval: The data acquired from the device at selected 

intervals. Ex: changes in the lighting condition of street lights. 

 Continuous Monitoring: Refers to the data sought from the 

device continuously. Ex: Data for traffic monitoring. 

 Data Dissemination: (Dissemination means to distribute, broadcast, 

diffuse or spread) 

There are three steps in the data enrichment before data dissemination 

 Aggregation: Refers to the process of joining together present and 

previously received data frames after removing redundant or 

duplicate data. 

 Compaction: means making information short without changing 

the meaning or context; ex. transmitting only the incremental 

value of the data so that the information is short. 

 Fusion: formatting the information received in parts through 

various data frames and several types of data, removing 

redundancy in the received data. 



 

 

 When the data transmission takes place in the wireless environment 

the energy dissipation or power consumption is a criteria. This is due to 

the battery life in the WSNs. 

 Energy efficient computations can be made use of by using the 

concepts of data aggregation, compaction and fusion. 

 Data Source and Data Destination: ID: Each device and resource is 

assigned an ID for specifying the data of source and a separate ID for 

data destination. 

 Address: Header fields add the destination address. 

 Data Characteristics, Formats and structures: Data characteristics 

can be in terms of temporal data i.e. dependent on time, Spatial Data 

i.e. dependent on location, real time data i.e. generated continuously 

and acquired continuously at the same pace, real world data i.e. ex: 

traffic or streetlight, Proprietary data i.e. data reserved with copy rights 

to authorised enterprises and Big Data i.e. unstructured voluminous 

data. 

 Data received from the devices can be in different formats for further 

communication like: XML, JSON, TLV. The structure implies the ways 

for arranging the data bytes in sequences with size limit. 

 Device Management (DM) at gateway: DM means provisioning the 

device ID or address which is distinct from other sources, device 

activating, configuring, registration, deregistering, attaching and 

detaching. 

 DM also means accepting subscription for its resources. 

 Open Mobile alliance (OMA)-DM and several standards for device 

management. 

 OMA-DM model suggests the use of a DM server which interacts with 

devices through a gateway in case of IoT/M2M application. 

 Gateway functions for device management are: 

 Forwarding the data/ request when the DM server and device 

interact without structuring. 

 Protocol conversion when the device and DM server use distinct 

protocols. 

 Proxy functions in case of intermediate pre fetch is required in a 

lossy environment or network environment needs. 

Web communication protocols used by connected IoT/M2M devices 

 An IoT/M2M device network gateway needs connectivity to web 

services. 

 A communication gateway enables web connectivity, while IoT/M2M 

methods and protocols enable the web connectivity for a connected 

device network. 



 

 

 Following are the key terms used in communication: 

 Application or APP: refers to software for applications for creating 

and sending an SMS, measuring and sending the measured data. 

 Application Programming Interface(API): refers to a software 

component, which receives messages from one end. It might consist 

of GUIs (Button, Checkbox and Dialog Box). 

 Web service: refers to a servicing software which web protocols, 

web objects utilize ex. Weather reports, traffic density. 

 Object: refers to collection of resources. 

 Object Model: defined as the usage of objects for values, messages, 

data or resource transfer, and creation of one or more object 

instances. 

 Class: It creates one or more instances. 

 Communication Gateway: functions as a communication protocol 

translator. 

 Client: refers to a software object which makes request for data, 

messages, resources or objects. 

 Server: is defining as software which sends a response on a 

request. 

 Web Object: That retrieves a resource from the web object at other 

end using a web protocol. 

 Broker: denotes an object which arranges the communication 

between two end point devices. 

 Proxy: an application which receives a response from the server for 

usage of the client or application and which also requests from the 

client for the responses retrieved or saved at proxy. 

 Communication protocol: defines the rules and conventions for 

communication between the web server and web clients. 

 Web protocol: that defines the rules and conventions for 

communication between the web server and web clients. It is a 

protocol for web connectivity of web objects, clients, servers and 

intermediate servers or firewalls. 

 Firewall: is one that protects the server from unauthentic 

resources. 

 Universal Resource Locator: is generally used for retrieving 

resources by a client. 

 Representational State Transfer (REST): is a software 

architecture referring to ways of defining the identifiers for the 

resources, methods, access methods and data transfer during 

interactions. 

 REST also refers to usage of defined resource types when 

transferring the objects between two ends-URIs or URLs for 

representations of the resource. 



 

 

 REST also refers to the usage of use verbs(commands), POST, GET, 

PUT and DELETE. 

 RESTful refers to one which follows REST constraints and 

characteristics. 

Web Communication Protocols for Connected Devices: 

REST-Representation State Transfer 

 REST (Representational State Transfer) is an architectural style for 

developing web services.

 REST is popular due to its simplicity and the fact that it builds upon 

existing systems and features of the internet's HTTP in order to achieve 

its objectives, as opposed to creating new standards, frameworks and 

technologies.

 It is implemented by using the following to fetch, maintain, enrich, 

update and append the data.

 

 



 

 

CoRE: Constrained RESTful Environment: 

IoT devices or M2M devices communicate between themselves in a Local 

Area Network 

 

| | | | 

| Thing (C) (S) Origin | 

| (S) | Server | 

|  | \ |  | 

(Sensor) \    

\ | | 

(C) Thing | 

|  | 

(Controller) 

(Resource Directory) 

 

 Nodes in IoT systems often implement both roles.
 Unlike intermediaries, however, they can take the initiative as a client 

(e.g., to register with a directory, such as CoRE Resource Directory or to 
interact with another thing) and act as origin server at the same time 

(e.g., to serve sensor values or provide an actuator interface).
 

Features: 
 

 Devices have a constraint in the sense that their data is limited in size 
compared to when data interchange between web clients and web 

servers takes place using HTTP, TCP and IP.
 Data Routing is another constraint when Routing Over a Network of 

Low Power and (data) Loss- ROLL.

 ROLL network is a low power wireless network.
 The devices may sleep most of the time in a low power environment and 

awaken on an event or when required.

Unconstrained Environment: 
 

 Web applications use HTTP and RESTful HTTP for web client and web 
server communication.

 A web object consists of 1000s of bytes.
 Data routes over IP networks for the Internet.

 

Constrained Application Protocol 

 Constrained Application Protocol (aka CoAP) is a specialized web transfer 

protocol for use with constrained nodes (low power sensors and 

actuators) and constrained networks (low power, lossy network).

 It enables those nodes to be able to talk with other constrained nodes 

over Internet.

 The protocol is specifically designed for M2M applications such as smart 

energy, home automation and many Industrial applications.

 



 

 

 

 

 

 CoAP  protocol  is  necessary   because   traditional   protocols   such   

as TCP/IP are considered “too heavy” for IoT applications that involves 

constrained devices.

 CoAP protocol runs on devices that support UDP protocol. In UDP 

protocol, client and server communicate through connectionless 

datagrams.

 As it is a web transfer protocol, it is based on RESTful architecture 

which provides a request/response interaction model between 

application endpoints and supports built-in discovery of services and 

resources.

 Like HTTP, Servers make resources under URL and clients access those 

resources using methods such as GET, PUT, POST and DELETE.

The CoAP protocol has the following features 
 

 It provides M2M communication in constrained environment. 

 It provides security of data by datagram transportation layer security 

(DTLS). 

 Asynchronous message exchange. 

 Low header overhead and parsing complexity 

 URI and content type support 

 UDP binding with optional reliability supporting unicast and 

multicast requests. 

 The CoAP is different from other protocols.

 When compared with HTTP, CoAP is implemented for IoT and M2M 

environment to send messages over UDP protocol.

 To compensate for the unreliability of UDP protocol, CoAP defines a 

retransmission mechanism and provides resource discovery mechanism 

with resource description.

https://www.engineersgarage.com/articles/transmission-control-protocolinternet-protocol-tcpip-iot-part-28
https://www.engineersgarage.com/articles/user-datagram-protocol-iot-part-30


 

 

CoAP should be on priority for the following three factors 

 Quality of service with confirmable message 

 When multicast support is needed 

 Very low overhead and simplicity. 

 CoAP follows a client-server communication model.

 Client makes request to the server and the server sends back the 

responses to the client.

 Client can GET, PUT, POST or DELETE the resources on network.

 CoAP improves the HTTP request model with the ability to observe a 

resource.

 In HTTP, the server needs to do polling again and again to check where 

there is any state changes to the client or not.

 Whereas in CoAP, the observe flag is set on the CoAP GET request, the 

server continues to reply after the initial document has been transferred.

 This allows servers to stream the state changes to clients as they occur. 

Any end can stop the observation.

 The CoAP defines a standard mechanism for resource discovery.

 Servers provide a list of their resources, along with metadata about 

them, at /.well-known/core. For Quality of Service (QoS), Requests and 

response messages may be marked as confirmable or non-confirmable.

 Confirmable messages must be acknowledged by the receiver. Non- 

confirmable messages are “fire and forget” type.

 

 
CoAP Protocol at Application Layer in Network Architecture 

 

CoAP Protocol Security 

 The main concern from security point of view is to provide Data Integrity, 

Data Authentication and Data Confidentiality.

 The CoAP provides security over Datagram Transportation Layer 

Security in Application layer.

 As CoAP runs over UDP protocol stack, there are chances of data loss or 

data disordering. But with DTLS security, these two problems can be 

solved.

https://www.engineersgarage.com/Articles/IOT-Architecture-Standards-Protocols


 

 

DTLS security adds three implementations to CoAP 

1) Packet retransmission 

2) Assigning sequence number within handshake 

3) Replay detection 

 
 The security is designed to prevent eavesdropping, tampering or data 

forgery at any cost.

 Unlike network layer security protocols, DTLS in application layer protect 

end-to-end communication.

 DTLS also avoids cryptographic overhead problems that occur in lower 

layer security protocols.

 There is a Secured Handshake Mechanism in DTLS as shown in image 

below
 

DTLS Secured Handshake Mechanism for CoAP 

 

 The CoAP can also be implemented over TCP and over TLS.

 Check out the following official documentation for CoAP implementation 

over TCP and TLS.

 An important part of RESTful API design is to model the system as a set of 

resources whose state can be retrieved and/or modified and where 

resources can be potentially also created and/or deleted.

 Uniform Resource Identifiers (URIs) are used to indicate a resource for 

interaction, to reference a resource from another resource, to advertise or 

bookmark a resource, or to index a resource by search engines.

 
foo://example.com:8042/over/there?name=ferret#nose 

\_/ \  /\  / \  / \  / 

| | | | | 

scheme authority path query fragment 



 

 

CoAP SMS 

 Is a protocol when CoAP object uses IP with networks and uses SMS. 

 SMS is used instead of UDP+DTLS by CoAP client server. 

 Client communicates to a mobile terminal(MT) endpoint over 

GPRS,HSPA or LTE using CoAP-SMS protocol. 

CoAP-SMS features: 

 An URI(Universal Resource Identifier) is used to send specified 

telephone number. 

Example: coap+sms://telNum/……. 

 CoAP msg consists of 160 character in 7-bits/8 bits 

 CoAP works with SIM(subscriber Identity Module) for SMS in cellular 

networks. 

 Does not support multi-casting 

 Two options are availble RUH(Response to URI-Host) and 

RUP(Response to URI-Port) for initiating CoAP client to know about 

the alternative interface are CIMP and SMPP 

 MSISDN and SIM based security is used during SMs data exchange. 

 CoAP request or response communication to a machine, IoT device or 

mobile terminal (MT) fig(a).

 A computer or machine interface using IP communication to a mobile 

service provider for data interchange with terminal fig(b)

  A machine or IoT device or mobile origin (MO) communication of CoAP 

request or response communication fig(c)

 An origin communication using SS7/CIMD/SMPP with a computer or 

machine interface using IP communication.
 



 

 

CoAP MQ: 
 

 
CoAP-MQ feature 

• It is message queue protocol. 

• CoAP provides resource-subcription, from publishers. 

• The device objects communicate using the CoAP client and server 

protocol and CoAP web object using DTLS as security protocol 

• UDP for CoAP APIs. 

Lightweight Machine to machine Communication Protocol: 

 It is a Communication protocol at the application layer.

 Specified by OMA-Open Mobile Alliance for transfer of data/ message.

 Why Light Weight Management: It is widely used for mobile devices, low 

cost remote management and service enabled mechanism that works on 

wireless connection.

 It provides data management as well as application data handling.

Features: 

 An object or resource use CoAP, DTLS and UDP or SMS protocols for 

sending a request or response.

 Use of plain text for a resource or use of JSON during a single data 

transferor binary TLV format data transfer.

 An object or its resource access using an URI.

 It uses 3 types of Interface functions:

 Bootstrapping 



 

 

 Registration 

 Report 

Advantages: 

 Enables plug and play solution between an increasing variety of M2M 

 Enables independent innovation of M2M applications and M2M 

platforms 

 
 

 
 



 

 

MQTT- Message Queue Telemetry Transport: 

 An open source protocol for machine-to-machine (M2M)/"Internet of Things" 

connectivity

 Created by IBM

 The objects communicating using the Connected devices network  protocols, 

such as ZigBee.

 Web objects also using MQTT library functions and communicate using IP 

network and SSL and TLS security protocols

MQTT Features 
 

 Constrained environment protocol.

 PubSub messaging architecture in place of request-response client-server 

architecture

 publisher (message sender at the device domain or web object at network and 

application domain) sending the messages on a topic.

 Subscriber (message receiver at the device domain or web object at network and 

application domain) receiving the messages on a subscribed topic

 Lightweight, running on limited resources of processor and memory processor or 

memory resources

 Header of fixed-length header and two bytes only

 M2Mqtt library providing a set of functions for coding

 M2Mqtt library functions in Java needing just 100 kB and in C# is 30 kB,

 Minimum number of exchanges, and therefore lessening the network traffic

 Three Quality of Services

 MQTT TCP/IP Connectivity

 Broker-based publish/subscribe messaging protocol

 publish/subscribe functions enable one-to-many message distribution 

decoupled with the applications (unconcerned about the payload)

 Notifying on an abnormal disconnection of a client, notified all nodes subscribing 

to the message

 The last will specifying the final action to be taken on failure to send the 

messages.

MQTT Broker Functions 
 

 Store and forward

 Clients publish topics and receives topics on subscription

 Recovers subscriptions on reconnect after a disconnection, unless client 

explicitly disconnected

 Acts as a broker between publisher of the topics and subscribers of the topics

 Finds client disconnection until DISCONNET message receives, keeps message 

alive till explicit disconnection

 retains the last received message from a publisher for a new connected 

subscriber on same topic, when retain field in the header is set.



 

 

XMPP (Extensible Messaging and Presence Protocol) 

 XMPP is the Extensible Messaging and Presence Protocol, a set of open 

technologies for instant messaging, presence, multi-party chat, voice 

and video calls, collaboration, lightweight middleware, content 

syndication, and generalized routing of XML data.

 XMPP was originally developed in the Jabber open-source community to 

provide an open, decentralized alternative to the closed instant 

messaging services at that time.

 XMPP offers several key advantages over such services:

 Open — the XMPP protocols are free, open, public, and easily 

understandable; in addition, multiple implementations exist in the 

form clients, servers, server components, and code libraries.

 Standard — the Internet Engineering Task Force  (IETF) has 

formalized the core XML streaming protocols as an approved instant 

messaging and presence technology.

 Decentralized — the architecture of the XMPP network is similar to 

email; as a result, anyone can run their own XMPP server, enabling 

individuals and organizations to take control of their communications 

experience.

 Secure — any XMPP server may be isolated from the public network 

(e.g., on a company intranet)

 Extensible — using the power of XML, anyone can build custom 

functionality on top of the core protocols; to maintain interoperability, 

common extensions.

 Flexible — XMPP applications beyond IM include network 

management, content syndication, collaboration tools, file sharing, 

gaming, remote systems monitoring, web services, lightweight 

middleware, cloud computing, and much more.

 Diverse — a wide range of companies and open-source projects use 

XMPP to build and deploy real-time applications and services; you will 

never get “locked in” when you use XMPP technologies.

http://www.ietf.org/
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MODULE 4 

4.1 Challenges for WSNs 

 
Handling such a wide range of application types will hardly be possible with any single 

realization of a WSN. Nonetheless, certain common traits appear, especially with respect to the 

characteristics and the required mechanisms of such systems. Realizing these characteristics with 

new mechanisms is the major challenge of the vision of wireless sensor networks. 

1.4.1 Characteristic requirements 

 

The following characteristics are shared among most of the application examples  

Type of service The service type rendered by a conventional communication network is evident 

– it moves bits from one place to another. For a WSN, moving bits is only a means to an end, but 

not the actual purpose. Rather, a WSN is expected to provide meaningful information and/or 

actions about a given task:  Additionally, concepts like scoping of interactions to specific 

geographic regions or to time intervals will become important. Hence, new paradigms of using 

such a network are required, along with new interfaces and new ways of thinking about the 

service of a network. 

Quality of Service Closely related to the type of a network’s service is the quality of that 

service. Traditional quality of service requirements – usually coming from multimedia-type 

applications– like bounded delay or minimum bandwidth are irrelevant when applications are 

tolerant to latency or the bandwidth of the transmitted data is very small in the first place. In 

some cases, only occasional delivery of a packet can be more than enough; in other cases, very 

high reliability requirements exist. In yet other cases, delay is important when actuators are to be 

controlled in a real-time fashion by the sensor network. The packet delivery ratio is an 

insufficient metric; what is relevant is the amount and quality of information that can be 

extracted at given sinks about the observed objects or area.Therefore, adapted quality concepts 

like reliable detection of events or the approximation 

quality of a, say, temperature map is important. 
 

Fault tolerance Since nodes may run out of energy or might be damaged, or since the wireless 

communication between two nodes can be permanently interrupted, it is important that the WSN 

as a whole is able to tolerate such faults. To tolerate node failure, redundant deployment is 

necessary, using more nodes than would be strictly necessary if all nodes functioned correctly. 



Lifetime In many scenarios, nodes will have to rely on a limited supply of energy (using 

batteries). Replacing these energy sources in the field is usually not practicable, and 

simultaneously, a WSN must operate at least for a given mission time or as long as possible. 

Hence, the lifetime of a WSN becomes a very important figure of merit. Evidently, an energy-

efficient 

way of operation of the WSN is necessary. As an alternative or supplement to energy supplies, a 

limited power source (via power 

sources like solar cells, for example) might also be available on a sensor node. Typically, these 

sources are not powerful enough to ensure continuous operation but can provide some recharging 

of batteries. Under such conditions, the lifetime of the network should ideally be infinite. The 

lifetime of a network also has direct trade-offs against quality of service: investing more 

energy can increase quality but decrease lifetime. Concepts to harmonize these trade-offs are 

required. 

The precise definition of lifetime depends on the application at hand. A simple option is to use 

the time until the first node fails (or runs out of energy) as the network lifetime. Other options 

include the time until the network is disconnected in two or more partitions, the time until 50% 

(or some other fixed ratio) of nodes have failed, or the time when for the first time a point in the 

observed region is no longer covered by at least a single sensor node (when using redundant 

deployment, it is possible and beneficial to have each point in space covered by several sensor 

nodes initially). 

Scalability Since a WSN might include a large number of nodes, the employed architectures and 

protocols must be able scale to these numbers. 

Wide range of densities In a WSN, the number of nodes per unit area – the density of the 

network – can vary considerably. Different applications will have very different node densities. 

Even within a given application, density can vary over time and space because nodes fail or 

move; the density also does not have to homogeneous in the entire network (because of 

imperfect deployment, for example) and the network should adapt to such variations. 

Programmability Not only will it be necessary for the nodes to process information, but also 

they will have to react flexibly on changes in their tasks. These nodes should be programmable, 

and their programming must be changeable during operation when new tasks become important. 

A fixed way of information processing is insufficient. 



Maintainability As both the environment of a WSN and the WSN itself change (depleted 

batteries, failing nodes, new tasks), the system has to adapt. It has to monitor its own health and 

statusto change operational parameters or to choose different trade-offs (e.g. to provide lower 

quality when energy resource become scarce). In this sense, the network has to maintain itself; it 

could also be able to interact with external maintenance mechanisms to ensure its extended 

operation at a required quality. 

4.2Enabling technologies for wireless sensor networks 
Building such wireless sensor networks has only become possible with some fundamental 

advances in enabling technologies. First and foremost among these technologies is the 

miniaturization of hardware. Smaller feature sizes in chips have driven down the power 

consumption of the basiccomponents of a sensor node to a level that the constructions of WSNs 

can be contemplated. This is particularly relevant to microcontrollers and memory chips as such, 

but also, the radio modems, responsible for wireless communication, have become much more 

energy efficient. Reduced chip size and improved energy efficiency is accompanied by reduced 

cost, which is necessary to make redundant deployment of nodes affordable. 

Next to processing and communication, the actual sensing equipment is the third relevant 

technology. Here, however, it is difficult to generalize because of the vast range of possible 

sensors. 

These three basic parts of a sensor node have to accompanied by power supply. This requires, 

depending on application, high capacity batteries that last for long times, that is, have only a 

negligible self-discharge rate, and that can efficiently provide small amounts of current. Ideally, 

a sensor node also has a device for energy scavenging, recharging the battery with energy 

gathered from the environment – solar cells or vibration-based power generation are conceivable 

options. 

Such a concept requires the battery to be efficiently chargeable with small amounts of current, 

which is not a standard ability. Both batteries and energy scavenging are still objects of ongoing 

research. 

The counterpart to the basic hardware technologies is software. The first question to answer here 

is the principal division of tasks and functionalities in a single node – the architecture of the 

operating system or runtime environment. This environment has to support simple retasking, 

cross-layer information exchange, and modularity to allow for simple maintenance. This 



software architecture on a single node has to be extended to a network architecture, where the 

division of tasks between nodes, not only on a single node, becomes the relevant question – for 

example, how to structure interfaces for application programmers. The third part to solve then is 

the question of how to design appropriate communication protocols. 

4.3 Hardware components 

A basic sensor node comprises five main components 

 

                     

                            

 

Controller A controller to process all the relevant data, capable of executing arbitrary code. 

Memory Some memory to store programs and intermediate data; usually, different types of 

memory are used for programs and data. 

Sensors and actuators The actual interface to the physical world: devices that can observe or 

control physical parameters of the environment. 

Communication Turning nodes into a network requires a device for sending and receiving 

information over a wireless channel. 

Power supply As usually no tethered power supply is available, some form of batteries are 

necessary to provide energy. Sometimes, some form of recharging by obtaining energy from the 

environment is available as well (e.g. solar cells). 

4.4 Energy consumption of sensor nodes 
 

4.41 Operation states with different power consumption 

As the previous section has shown, energy supply for a sensor node is at a premium: batteries 

have small capacity, and recharging by energy scavenging is complicated and volatile. Hence, 

the energy consumption of a sensor node must be tightly controlled. The main consumers of 

energy are the controller, the radio front ends, to some degree the memory, and, depending on 

the type, the sensors. 



To give an example, consider the energy consumed by a microcontroller per instruction. A 

typical ball park number is about 1 nJ per instruction.To put this into perspective with the battery 

capacity numbers from Section 2.1.6, assume a battery volume of one cubic millimeter, which is 

about the maximum possible for the most ambitious visions of “smart dust”. Such a battery could 

store about 1 J. To use such a battery to power a node even only a single day, the node must not 

consume continuously more than 1/(24 ・ 60 ・ 60) Ws/s ≈ 11.5 μW. No current controller, let 

alone an entire node, is able to work at such low-power levels. 

One important contribution to reduce power consumption of these components comes from chip-

level and lower technologies: Designing low-power chips is the best starting point for an energy-

efficient sensor node. But this is only one half of the picture, as any advantages gained by such 

designs can easily be squandered when the components are improperly operated. 

The crucial observation for proper operation is that most of the time a wireless sensor node has 

nothing to do. Hence, it is best to turn it off. Naturally, it should be able to wake up again, on the 

basis of external stimuli or on the basis of time. Therefore, completely turning off a node is not 

possible, but rather, its operational state can be adapted to the tasks at hand. Introducing and 

using multiple states of operation with reduced energy consumption in return for reduced 

functionality is the core technique for energy-efficient wireless sensor node. In fact, this 

approach is well known even from standard personal computer hardware, where, for example, 

the Advanced Configuration 

and Power Interface (ACPI) introduces one state representing the fully operational machine and 

four sleep states of graded functionality/power consumption/wakeup time (time necessary to 

return to fully operational state). The term Dynamic Power Management (DPM) summarizes this 

field of work . 

These modes can be introduced for all components of a sensor node, in particular, for controller, 

radio front end, memory, and sensors. Different models usually support different numbers of 

such sleep states with different characteristics; some examples are provided in the following 

sections. For a controller, typical states are “active”, “idle”, and “sleep”; a radio modem could 

turn transmitter, receiver, or both on or off; sensors and memory could also be turned on or off. 

The usual terminology is to speak of a “deeper” sleep state if less power is consumed. 

While such a graded sleep state model is straightforward enough, it is complicated by the fact 

that transitions between states take both time and energy. The usual assumption is that the deeper 



the sleep state, the more time and energy it takes to wake up again to fully operational state (or to 

another, less deep sleep state). Hence, it may be worthwhile to remain in an idle state instead of 

going to deeper sleep states even from an energy consumption point of view. 

Figure illustrates this notion based on a commonly used model. At time t1, the decision whether 

or not a component (say, the microcontroller) is to be put into sleep mode should be taken to 

reduce power consumption from Pactive to Psleep. If it remains 

active and the next event occurs at time tevent, then a total energy of Eactive = Pactive(tevent − 

t1) has be spent uselessly idling. Putting the component into sleep mode, on the other hand, 

requires a time τdown until sleep mode has been reached; as a simplification, assume that the 

average power consumption during this phase is (Pactive + Psleep)/2. Then, Psleep is consumed 

until tevent. In total, 

τdown(Pactive + Psleep)/2 + (tevent − t1 − τdown)Psleep energy is required in sleep mode as 

opposed to 

(tevent − t1)Pactive when remaining active. The energy saving is thus  

Esaved =(tevent − t1)Pactive − (τdown(Pactive + Psleep)/2 +(tevent − t1 − τdown)Psleep) 

Eoverhead = τup(Pactive + Psleep)/2 

 

 

Once the event to be processed occurs, however, an additional overhead of is incurred to come back to 

operational state before the event can be processed, again making a simplifying assumption about average power consumption 

during makeup. This energy is indeed an overhead since no useful activity can be undertaken during this time. Clearly, switching 

to a sleep mode is only beneficial if  

Eoverhead < Esaved or, equivalently, if the time to the next event is sufficiently large: 

 

 

4.5 Operating systems and execution environments 

 
4.5.1 Embedded operating systems 



 

The traditional tasks of an operating system are controlling and protecting the access to resources 

(including support for input/output) and managing their allocation to different users as well as 

the support for concurrent execution of several processes and communication between these 

processes. These tasks are, however, only partially required in an embedded system as the 

executing code is much more restricted and usually much better harmonized than in a general-

purpose system. 

Also, as the description of the microcontrollers has shown, these systems plainly do not have the 

required resources to support a full-blown operating system. Rather, an operating system or an 

execution environment – perhaps the more modest term is the 

more appropriate one – for WSNs should support the specific needs of these systems. In 

particular, the need for energy-efficient execution requires support for energy management, for 

example, in the form of controlled shutdown of individual components or Dynamic Voltage 

Scaling (DVS) techniques. Also, external components – sensors, the radio modem, or timers – 

should be handled easily and efficiently, in particular, information that becomes available 

asynchronously (at any 

arbitrary point in time) must be handled. 

All this requires an appropriate programming model, a clear way to structure a protocol stack, 

and explicit support for energy management – without imposing too heavy a burden on scarce 

system resources like memory or execution time. These three topics are treated in the following 

sections, with a case study completing the operating system considerations. 

 

4.5.2 Programming paradigms and application programming interfaces 

Concurrent Programming 

One of the first questions for a programming paradigm is how to support concurrency. Such 

support for concurrent execution is crucial for WSN nodes, as they have to handle data 

communing from arbitrary sources – for example, multiple sensors or the radio transceiver – at 

arbitrary points in time. For example, a system could poll a sensor to decide whether data is 

available and process the data right away, then poll the transceiver to check whether a packet is 

available, and then immediately process the packet, and so on. Such a simple sequential model 

would run the risk of missing data while a packet is processed or missing a packet when sensor 



information is processed. This risk is particularly large if the processing of sensor data or 

incoming packets takes substantial amounts of time, which can easily be the case. Hence, a 

simple, sequential programming model is clearly insufficient. 

Process-based concurrency 

Most modern, general-purpose operating systems support concurrent (seemingly parallel) 

execution of multiple processes on a single CPU. Hence, such a process-based approach would 

be a first candidate to support concurrency in a sensor node as well; it is illustrated in (b) of 

Figure While indeed this approach works in principle, mapping such an execution model of 

concurrent processes to a sensor node shows, however, that there are some granularity 

mismatches : Equating individual protocol functions or layers with individual processes would 

entail a high overhead in switching from one process to another. This problem is particularly 

severe if often tasks have to be executed that are small with respect to the overhead incurred for 

switching between tasks – which is typically the case in sensor networks. Also, each process 

requires its own stack space in memory, which fits ill with the stringent memory constraints of 

sensor nodes. 

 

Event-based programming 

For these reasons, a somewhat different programming model seems preferable. The idea is to 

embrace the reactive nature of a WSN node and integrate it into the design of the operating 

system. The system essentially waits for any event to happen, where an event typically can be the 

availability of data from a sensor, the arrival of a packet, or the expiration of a timer. Such an 

event is then handled by a short sequence of instructions that only stores the fact that this event 

has occurred and stores the necessary information – for example, a byte arriving for a packet or 

the sensor’s value – somewhere. The actual processing of this information is not done in these 

event handler routines, but separately, decoupled from the actual appearance of events. This 

event-based programming model is sketched in Figure 

Such an event handler can interrupt the processing of any normal code, but as it is very 

simpleand short, it can be required to run to completion in all circumstances without noticeably 

disturbing other code. Event handlers cannot interrupt each other (as this would in turn require 

complicatedstack handling procedures) but are simply executed one after each other. 



                

 

Event Based Programming Model 

4.6 Design principles for WSNs 

Appropriate QoS support, energy efficiency, and scalability are important design and 

optimization goals for wireless sensor networks. But these goals themselves do not provide many 

hints on how to structure a network such that they are achieved. A few basic principles have 

emerged, which can be useful when designing networking protocols; the description here follows 

partially references Nonetheless, the general advice to always consider the needs of a concrete 

application holds here as well – for each of these basic principles, there are examples where 

following them would result in inferior solutions. 

 

4.6.1 Distributed organization 

Both the scalability and the robustness optimization goal, and to some degree also the other 

goals, make it imperative to organize the network in a distributed fashion. That means that there 

should be no centralized entity in charge – such an entity could, for example, control medium 

access ormake routing decisions, similar to the tasks performed by a base station in cellular 

mobile networks. 

The disadvantages of such a centralized approach are obvious as it introduces exposed points of 

failure and is difficult to implement in a radio network, where participants only have a limited 



communication range. Rather, the WSNs nodes should cooperatively organize the network, using 

distributed algorithms and protocols. Self-organization is a commonly used term for this 

principle. When organizing a network in a distributed fashion, it is necessary to be aware of 

potential short comings of this approach. In many circumstances, a centralized approach can 

produce solutions that perform better or require less resources (in particular, energy). To 

combine the advantages, one possibility is to use centralized principles in a localized fashion by 

dynamically electing, out of the set of equal nodes, specific nodes that assume the 

responsibilities of a centralized agent, for 

example, to organize medium access. Such elections result in a hierarchy, which has to be 

dynamic: The election process should be repeated continuously lest the resources of the elected 

nodes be overtaxed, the elected node runs out of energy, and the robustness disadvantages of 

such – even only localized – hierarchies manifest themselves. The particular election rules and 

triggering conditions for reelection vary considerably, depending on the purpose for which these 

hierarchies are used. 

4.6.2 In-network processing 

When organizing a network in a distributed fashion, the nodes in the network are not only 

passing on packets or executing application programs, they are also actively involved in taking 

decisions about how to operate the network. This is a specific form of information processing 

that happens in the network, but is limited to information about the network itself. It is possible 

to extend this concept by also taking the concrete data that is to be transported by the network 

into account in this information processing, making in-network processing a first-rank design 

principle. 

Several techniques for in-network processing exist, and by definition, this approach is open to an 

arbitrary extension – any form of data processing that improves an application is applicable 

Aggregation 

Perhaps the simplest in-network processing technique is aggregation. Suppose a sink is interested 

in obtaining periodic measurements from all sensors, but it is only relevant to check whether the 

average value has changed, or whether the difference between minimum and maximum value is 

too big. In such a case, it is evidently not necessary to transport are readings from all sensors to 

the sink, but rather, it suffices to send the average or the minimum and maximum value The 

name aggregation stems from the fact that in nodes intermediate between sources and sinks, 



information is aggregated into a condensed form out of information provided by nodes further 

away from the sink (and potentially, the aggregator’s own readings). 

Distributed source coding and distributed compression 

Aggregation condenses and sacrifices information about the measured values in order not to have 

to transmit all bits of data from all sources to the sink. Is it possible to reduce the number of 

transmitted bits (compared to simply transmitting all bits) but still obtain the full information 

about  all sensor readings at the sink? 

While this question sounds surprising at first, it is indeed possible to give a positive answer. It is 

related to the coding and compression problems known from conventional networks, where a lot 

of effort is invested to encode, for example, a video sequence, to reduce the required bandwidth  

The problem here is slightly different, in that we are interested to encode the information 

provided by several sensors, not just by a single camera; moreover, traditional coding schemes 

tend to put effort into the encoding, which might be too computationally complex for simple 

sensor nodes. 

How can the fact that information is provided by multiple sensors be exploited to help in coding? 

If the sensors were connected and could exchange their data, this would be conceivable (using 

relatively standard compression algorithms), but of course pointless. Hence, some implicit, joint 

information between two sensors is required. Recall here that these sensors are embedded in a 

physical environment – it is quite likely that the readings of adjacent sensors are going to be 

quite similar; they are correlated. Such correlation can indeed be exploited such that not simply 

the sum of the data must be transmitted but that overhead can be saved here. 

Distributed and collaborative signal processing 

The in-networking processing approaches discussed so far have not really used the ability for 

processing in the sensor nodes, or have only used this for trivial operations like averaging or 

finding the maximum. When complex computations on a certain amount of data is to be done,it 

can still be more energy efficient to compute these functions on the sensor nodes despite their 

limited processing power, if in return the amount of data that has to be communicated can be 

reduced. 

An example for this concept is the distributed computation of a Fast Fourier Transform (FFT). 

Depending on where the input data is located, there are different algorithms available to compute 

an FFT in a distributed fashion, with different trade-offs between local computation complexity 



and the need for communication. In principle, this is similar to algorithm design for parallel 

computers. However, here not only the latency of communication but also the energy 

consumption of communication and computation are relevant parameters to decide between 

various algorithms. Such distributed computations are mostly applicable to signal processing 

type algorithms. 

Mobile code/Agent-based networking 

With the possibility of executing programs in the network, other programming paradigms or 

computational models are feasible. One such model is the idea of mobile code or agent-based 

networking. 

The idea is to have a small, compact representation of program code that is small enough to be 

sent from node to node. This code is then executed locally, for example, collecting 

measurements, and then decides where to be sent next. This idea has been used in various 

environments; a classic example is that of a software agent that is sent out to collect the best 

possible travel itinerary by hopping from one travel agent’s computer to another and eventually 

returning to the user who has posted this inquiry. There is a vast amount of literature available on 

mobile code/software agents in general. A newer take on this approach is to consider 

biologically inspired systems, in particular, the swarm intelligence of groups of simple entities, 

working together to reach a common goal. 

4.7 Service interfaces of WSNs 

4.7.1 Structuring application/protocol stack interfaces 

Component-based operating system and protocol stack already enables one possibility to treat an 

application: It is just another component that can directly interact with other components using 

whatever interface specification exists between them (e.g. the 

command/event structure of TinyOS). The application could even consist of several components, 

integrated at various places into the protocol stack. This approach has several advantages: It is 

streamlined with the overall protocol structure, makes it easy to introduce application-specific 

code into the WSN at various levels, and does not require the definition of an abstract, specific 

service interface. Moreover, such a tight integration allows the application programmer a very 

fine-grained control over which protocols (which components) are chosen for a specific task; for 

example, it is 



possible to select out of different routing protocols the one best suited for a given application by 

accessing this component’s services. 

But this generality and flexibility is also the potential downside of this approach. The allowing of 

the application programmer to mess with protocol stacks and operating system internals should 

not be undertaken carelessly. In traditional networks such as the Internet, the application 

programmer can access the services of the network via a commonly accepted interface: sockets. 

This interface makes clear provisions on how to handle connections, how to send and receive packets,and 

how to inquire about state information of the network. This clarity is owing to the evident tasksthat this 

interface serves – the exchange of packets with one (sometimes, several) communication peers. 

Therefore, there is the design choice between treating the application as just another component or 

designing a service interface that makes all components, in their entirety, accessible in a standardized 

fashion. These two options are outlined by Figure. A service interface would allow to raise the level of 

abstraction with which an application can interact with the WSN – instead of having to specify which 

value to read from which particular sensor, it might be desirable to provide an application with the 

possibility to express sensing tasks in terms that are close to the semantics 

of the application. In this sense, such a service interface can hide considerable complexity and is actually 

conceivable as a “middleware” in its own right. 

Clearly, with a tighter integration of the application into the protocol stack, a broader optimization 

spectrum is open to the application programmer. On the downside, more experience will be necessary 

than when using a standardized service interface. The question is therefore on the one hand the price of 

standardization with respect to the potential loss of performance and on the other hand, the complexity of 

the service interface. In fact, the much bigger complexity and variety of communication patterns in 

wireless sensor networks compared to Internet networks makes a more expressive and potentially 

complex service interface necessary. To better understand this trade-off, a clearer understanding of 

expressibility requirements of such an interface is necessary. 

 

 

 



4.7.2 Expressibility requirements for WSN service interfaces 

The most important functionalities that a service interface should expose include: 

• Support for simple request/response interactions: retrieving a measured value from some sensor 

or setting a parameter in some node. This is a synchronous interaction pattern in the sense that 

the result (or possibly the acknowledgment) is expected immediately. In addition, the responses 

can be required to be provided periodically, supporting periodic measurement-type applications. 

• Support for asynchronous event notifications: a requesting node can require the network to 

inform it if a given condition becomes true, for example, if a certain event has happened. This is 

an asynchronous pattern in the sense that there is no a priori relationship between the time the 

request is made and the time the information is provided. This form of asynchronous requests 

should be accompanied by the possibility to cancel the request for information. It can be further 

refined by provisions about what should happen after the condition becomes true; a typical 

example is to request periodic reporting of measured values 

after an event. 

• For both types of interactions, the addressees should be definable in several ways. The simplest 

option is an explicit enumeration of the single or multiple communication peers to whom a 

(synchronous or asynchronous) request is made – this corresponds to the peer address in a socket 

communication. 

• Location – all nodes that are in a given region of space belong to a group. 

• Observed value – all nodes that have observed values matching a given predicate belong to a 

group. An example would be to require the measured temperature to be larger than 20◦C. Along 

with these groups, the usual set-theoretic operations of intersection, union, or difference between 

groups should be included in the service interface as well. Because of this natural need for a 

service interface semantics that corresponds to the publish/ subscribe concept, this approach is a 

quite natural, but not the only possible, fit with WSNs. 

• In-networking processing functionality has to be accessible. For an operation that accesses an 

entire group of nodes, especially when reading values from this group (either synchronously or 

asynchronously), it should be possible to specify what kind of in-network processing should be 

applied to it. In particular, processing that modifies the nature of the result (i.e., data fusion) 



must be explicitly allowed by the requesting application. In addition, it can be desirable for an 

application to be able to infuse its own in-network processing functions into the network. For 

example, a new aggregation function could be defined or a specific 

mobile agent has to be written by the application programmer anyway. 

In-network processing and application-specific code may also be useful to detect complex 

events: events that cannot be detected locally, by a single sensor, but for which data has to be 

exchanged between sensors. 

• Related to the specification of aggregation functions is the specification of the required 

accuracy of a result. This can take on the form of specifying bounds on the number of group 

members that should contribute to a result, or the level of compression that should be applied. 

Hand in hand with required accuracy goes the acceptable energy expenditure to produce a given 

piece of information. 

• Timeliness requirements about the delivery of data is a similar aspect. For example, it may be 

possible to provide a result quickly but at higher energy costs (e.g. by forcing nodes to wakeup 

earlier than they would wake up anyway) or slowly but at reduced energy costs (e.g. by piggy-

backing information on other data packets that have to exchanged anyway). 

4.8 Gateway concepts 

 
4.8.1 The need for gateways 

For practical deployment, a sensor network only concerned with itself is insufficient. The 

network rather has to be able to interact with other information devices, for example, a user 

equipped with a PDA moving in the coverage area of the network or with a remote user, trying to 

interact with thesensor network via the Internet (the standard example is to read the temperature 

sensors in one’s home while traveling and accessing the Internet via a wireless connection). 

Figure shows this networking scenario. To this end, the WSN first of all has to be able to 

exchange data with such a mobile device or with some sort of gateway, which provides the 

physical connection to the Internet. This is relatively straight forward on the physical, MAC, and 

link layer – either the mobile device/the gateway is equipped with a radio transceiver as used in 

the WSN, or some (probably not all) nodes in the WSN 

support standard wireless communication technologies such as IEEE 802.11. Either option can 

be advantageous, depending on the application and the typical use case. Possible trade-offs 

include the percentage of multitechnology sensor nodes that would be required to serve mobile 



users in comparison with the overhead and inconvenience to fit WSN transceivers to mobile 

devices like PDAs. 

 

 

 

 

WSN to Internet communication 

Assume that the initiator of a WSN–Internet communication resides in the WSN– for example, a 

sensor node wants to deliver an alarm message to some Internet host. The first problem to solve 

is akin to ad hoc networks, namely, how to find the gateway from within the network. Basically, 

a routing problem to a node that offers a specific service has to be solved, integrating routing and 

service discovery. If several such gateways are available, how to choose between them? In 

particular, if not all Internet hosts are reachable via each gateway or at least if some gateway 

should be preferred for a given destination host? How to handle several gateways, each capable 

of IP networking, and the communication among them? One option is to build an IP overlay 

network on top of the sensor network. 

How does a sensor node know to which Internet host to address such a message? Or even worse, 

how to map a semantic notion (“Alert Alice”) to a concrete IP address? Even if the sensor node 

does not need to be able to process the IP protocol, it has to include sufficient information (IP 

address and port number, for example) in its own packets; the gateway then has to extract this 

information and translate it into IP packets. An ensuing question is which source address to use 

here – the gateway in a sense has to perform tasks similar to that of a Network Address 

Translation (NAT). 

 



 

 

 

Internet to WSN communication 

The case of an Internet-based entity trying to access services of a WSN is even more 

challenging. This is fairly simple if this requesting terminal is able to directly communicate 

withthe WSN, for example, a mobile requester equipped with a WSN transceiver, and also has 

all the necessary protocol components at its disposal. In this case, the requesting terminal can be 

a direct part of the WSN and no particular treatment is necessary. The more general case is, 

however, a terminal “far away” requesting the service, not immediately able to communicate 

with any sensor node and thus requiring the assistance of a gateway node. 

First of all, again the question of service discovery presents itself – how to find out that there 

actually is a sensor network in the desired location, and how to find out about the existence of a 

gateway node? Once the requesting terminal has obtained this information, how to access the 

actual services?Clearly, addressing an individual sensor (like addressing a communication peer 

in a traditional Internet application) both goes against the grain of the sensor network philosophy 

where an individual sensor node is irrelevant compared to the data that it provides and is 

impossible if a sensor node does not even have an IP address. The requesting terminal can 

instead send a properly formatted request to this gateway, which acts as an application-level 

gateway or a proxy for the individual/set of sensor nodes that can answer this request; the 

gateway translates this request into the proper intrasensor network protocol interactions. This 

assumes that there is an application-level protocol that a remote requester and gateway can use 



and that is more suitable for communication over the Internet than the actual sensor network 

protocols and that is more convenient for the remote terminal to use. The gateway can then mask, 

for example, a data-centric data exchange within the network behind an identity-centric 

exchange used in the Internet. 

It is by no means clear that such an application-level protocol exists that represents an actual 

simplification over just extending the actual sensor network protocols to the remote terminal, but 

there are some indications in this direction. For example, it is not necessary for the remote 

terminalto be concerned with maintaining multihop routes in the network nor should it be 

considered as “justanother hop” as the characteristics of the Internet connection are quite 

different from a wireless hop. 

In addition, there are some clear parallels for such an application-level protocol with so-called 

Web Service Protocols, which can explicitly describe services and the way they can be accessed. 

The Web Service Description Language (WSDL) ,in particular, can be a promising starting point 

for extension with the required attributes for WSN service access – for example, required 

accuracy, energy trade-offs, or data-centric service descriptions. Moreover, the question arises as 

to how to integrate WSN with general middleware architectures or how to make WSN services 

accessible from, say, a standard Web browser (which should be an almost automatic by-product 

of using WSDL and related standards in the gateway). However, research here is still in its early 

infancy. 

 

 

 

 

 

 

 

 

 



 

 

 

 

Module – 5 

 
Module-5 covered by chapters 4, 5, 7, 10 and 11 from the prescribed text book “Protocols and 

Architectures for Wireless Sensor Networks” by Holger Karl and Andreas Willig 

Chapter 4: Physical Layer (Chapter 4: 4.3, Page 103 - 108) 

o Physical Layer and Transceiver Design Considerations in WSN 

Chapter 5: MAC Protocols (chapter 5: 5.1.3, 5.2, 5.3, 5.4, Page 119 - 139) 

o MAC protocols for wireless sensor networks 

o Low Duty Cycle Protocols and Wakeup Concepts 

- S-MAC 

- The Mediation Device Protocol 

- Wakeup Radio Concepts 

o Contention based protocols : CSMA, PAMAS 

o Schedule based protocols: LEACH, SMACS, TRAMA 

Chapter 7: Naming and addressing. (Chapter 7: 7.1, 7.2, 7.3, Page182- 189) 

o Fundamentals 

o Address and name management in wireless sensor networks 

o Assignment of MAC addresses 

Chapter 10: Topology control (Chapter 10: 10.4, Page 274- 284) 

o Hierarchical networks by clustering 

Chapter 11: Routing Protocols for WSN. (Chapter 11: 11.3, 11.5, Page 295-304 & Page 316-327) 

o Energy-Efficient Routing 

o Geographic Routing 
 

 

Chapter 4: Physical Layer of WSN 

 Introduction: The physical layer is mostly concerned with modulation and demodulation of 

digital data; this task is carried out by transceivers. In sensor networks, the challenge is to 

find modulation schemes and transceiver architectures that are simple, low cost, but still 

robust enough to provide the desired service. 

 Physical Layer and Transceiver Design Considerations in WSN: Some of the most crucial 

points influencing physical layer design in wireless sensor networks are: 

 Low power consumption. 

 Small transmit power and thus a small transmission range. 

 Operate at Due to low duty cycle. 

 Keep most of the hardware should be switched off or operated in a low-power standby 

mode most of the time. 



 

 

 

 Comparably low data rates, on the order of tens to hundreds kbps required. 

 Low implementation complexity and costs. 

 Low degree of mobility. 

 A small form factor for the overall node. 

 
 Energy usage profile: The choice of a small transmit power leads to an energy consumption 

profile different from other wireless devices like cell phones. The radiated energy is small but the 

overall transceiver consumes much more energy than is actually radiated, for example. for the Mica 

motes, 21 mW are consumed in transmit mode and 15 mW in received mode for a radiated power 

of 1 mW. 

 Strive for good power efficiency at low transmission power

o Some amplifiers are optimized for efficiency at high output power 

o To radiate 1 mW, typical designs need 30-100 mW to operate the transmitter (RF and 

CMOS transceiver). 

 Receiver can use as much or more power as transmitter at these power levels.

 Many practical transmitter designs have efficiencies below 10% at low radiated power.

 For small transmit powers, the transmit and receive modes consume more or less the same 

power; therefore it is important to put the transceiver into sleep state instead of idle state.

 This rises the problem of startup energy/ startup time which a transceiver has to spend upon 

waking up from sleep mode, for example, to ramp up phase locked loops or voltage controlled 

oscillators; during this startup time, no transfer of data is possible; for example, the μAMPS-1 

transceiver needs 466 μs and a power dissipation of 58 mW; therefore, going into sleep mode is 

unfavorable when the next wakeup comes fast.

 For the WIN nodes, 1500 to 2700 instructions can be executed per transmitted bit.

 Computation is cheaper than communication: the ratio is hundreds to thousands of 

instructions/ 1 transmitted bit.

 Choice of modulation scheme: The choice of modulation scheme depends on several aspects, 

including technological factors, packet size, and target error rate and channel error model. The 

higher the data rate offered by a transceiver/modulation, the smaller the time needed to transmit a 

given amount of data and, consequently, the smaller the energy consumption. Power consumption 

can depend on modulation scheme. The power consumption of a modulation scheme depends 

much more on the symbol rate than on the data rate; it leads to desire of high data rates at low 

symbol rates which ends to m – ary modulation schemes; trade – offs: 

 M – ary modulation schemes require more hardware than 2 – ary schemes 

 M – ary modulation schemes require for increasing m an increased Eb/N0 ratio 



 

 

 

 Generally, in WSN applications most packets are short; for them, the startup time dominates 

overall energy consumption making the other efforts irrelevant; Dynamic modulation 

scaling is necessary(see Table 4.3) 

 

 
 

 

 

 
 Dynamic modulation scaling 

 To achieve delay constraints or high throughput need higher modulation schemes. 

 Problem: higher modulation levels need higher radiated energy. 

 Solution: Consider methods to adapt the modulation scheme to the current situation. Such 

an approach, called “dynamic modulation scaling”. 

 Both energy per bit and delay per bit are minimized for the maximum symbol rate. 

 Antenna considerations 

 Sensor nodes size restricts the size and the number of antennas and antenna diversity. 

 If the antenna is much smaller than the carrier’s wavelength, it is hard to achieve good 

antenna efficiency and transmitted energy must increase. 



 

 

 

 In case of multiple antennas, they should be spaced apart at least 40 – 50% of the 

wavelength used to achieve good effects; for ex. for 2.4 GHz, a spacing of 5 – 6 cm between 

the antennas is necessary, which is difficult to be accepted. 

 Radio waves emitted from antennas close to the ground, typical in some applications, are 

faced with higher path – loss coefficients than the common value of α = 2; a typical value, 

considering the obstacles too, is α = 4; 

 Nodes randomly scattered on the ground, deployed from an aircraft, will land in random 

orientations, with the antennas facing the ground or being otherwise obstructed; this can 

lead to nonisotropic propagation of the radio wave, with considerable differences in the 

strength of the emitted signal in different directions. 
 

Chapter 5: MAC Protocols 

The fundamental task of any MAC protocol is to regulate the access of a number of nodes to a 

shared medium. 

 Important classes of MAC protocols 
 

A huge number of (wireless) MAC protocols have been devised. They can be roughly 

classified into the following classes 

1. Fixed assignment protocols: In this class of protocols, the available resources are divided 

between the nodes such that the resource assignment is long term and each node can use 

its resources exclusively without the risk of collisions. Typical protocols of this class are 

TDMA, FDMA, CDMA, and SDMA.. 

2.  Demand assignment protocols: Here protocols exclusive allocation of resources to 

nodes is made on a short-term basis, typically the duration of a data burst. This class of 

protocols can be broadly subdivided into centralized and distributed protocols. Example 

HIPERLAN/2 protocol, DQRUMA, the MASCARA protocol and polling schemes. 

3. Random access protocols: The nodes are uncoordinated, and the protocols operate in  

a fully distributed manner. Examples ALOHA, CSMA, CSMA-CD, CSMA-CA. 
 



 

 

 

 MAC protocols for wireless sensor networks: The fundamental task of any MAC protocol is to 

regulate the access of a number of nodes to a shared medium. In this section, narrow down the 

specific requirements and design considerations for MAC protocols in wireless sensor networks. 

 Requirements: New requirements are imposed by WSNs, the main one being the energy 

efficiency; Typical performance figures like fairness, throughput or delay have a minor role in 

SNs; fairness is not important since the nodes in a WSN do not represent individuals competing 

for bandwidth, but they collaborate to achieve a common goal; Other important requirements:

o Scalability: is obvious when considering very dense sensor networks with dozens or 

hundreds of nodes in mutual range 

o Robustness against frequent topology changes: are caused by nodes powering down 

temporarily to replenish their batteries by energy scavenging, mobility, deployment of new 

nodes or death of existing nodes. 

o Low complexity operation: Sensor nodes are simple, cheap and have limited hardware 

resources; therefore computational expensive operations like complex scheduling 

algorithms should be avoided. Very tight time synchronization would require frequent 

resynchronization of neighboring nodes, which can consume significant energy. 

 
 Energy problems on the MAC layer***: Transmitting is costly, receive costs often are as 

transmit costs, idling can be cheaper but also about as expensive as receiving and sleeping costs 

almost nothing but results in a deaf node. The following are the major energy waste problems 

are related to MAC protocols:

1. Collision: Collision occurs when two sensor nodes transmit their packets at the same time. 

Retransmissions of the packets increase both energy consumption and delivery latency. 

2.  Overhearing: Overhearing occurs when a sensor node receives packets that are destined 

for other nodes. Overhearing such packets results in unnecessary waste of energy and such 

waste can be very large when traffic load is heavy and node density is high. 

3.  Idle Listening: The node will stay in an idle state for a long time, which results in a large 

amount of energy waste. There are reports that idle listening consumes 50 – 100% of the 

energy required for receiving data traffic. 

4.  Control Overhead: A MAC protocol requires sending, receiving, and listening to a certain 

necessary control. Which also consumes energy not for data communication 
 

 Low duty cycle protocols and wakeup concepts*** 

Low duty cycle protocols try to avoid spending much time in the idle state and to reduce the 

communication activities of a sensor node to a minimum; In an ideal case, the sleep state is left only 

when a node is about to transmit or receive packets; In several protocols, a periodic wakeup 

scheme is used; one flavor is the cycled receiver approach. It is illustrated in Figure 5.4. In this 



 

 

 

approach, nodes spend most of their time in the sleep mode and wake up periodically to receive 

packets from other nodes. 

 

 
 A node A listens onto the channel during its listen period and goes back into sleep mode when 

no other node communicates with it.

 A potential transmitter B must know about A’s listen periods and send its packet at the right 

time; this is a so-called rendezvous.

 A rendezvous can be implemented by letting node A to send a beacon at the beginning of its 

listen period or letting node B to send frequent request packets until one of them is sensed by 

node A.

 If node A wants to send a packet, it must also know the target’s listen period.

 A wakeup period = sleep period + listen period.

 The node’s duty cycle = listen period/ wakeup period.

 Observations:

- By choosing a small duty cycle, the transceiver is in sleep mode most of the time, avoiding 

idle listening and conserving energy. 

- By choosing a small duty cycle, the traffic directed from neighboring nodes to a given node 

concentrates on a small time window (the listen period) and in heavy load situations 

significant competition can occur. 

- Choosing a long sleep period induces a significant per – hop latency, since a prospective 

transmitter node has to wait an average of half a sleep period before the receiver can accept 

packets; in the multihop case, the per – hop latencies add up and create significant end – to – 

end latencies. 

- Sleep phases should not be too short lest the start – up costs outweigh the benefits; 

- In other protocols, there is also a periodic wakeup but nodes can both transmit and receive 

during their wakeup phases; when all nodes have their wakeup phases at the same time, 

there is no need for a rendezvous. 

 Sparse topology and energy management (STEM)*** 

The goal of topology management is to coordinate the sleep transitions of all the nodes, 

while ensuring adequate network connectivity, such that data can be forwarded efficiently to the 

data sink. This protocol tries to save energy due to idle listening. This protocol does not provide a 



 

 

 

complete MAC protocol, however a MAC protocol can be used along with it to give a complete MAC 

protocol. 

 This protocol proposes to use two channels

1. Wake up channel: Wake up channel is used to inform the receiver that a transmitter wants 

to transmit data to it 

2. Data channel: Data channel is used to transmit data, underlying MAC protocol is used for 

this data transmission. 

 STEM is designed for applications which wait for an event and report that event, when the 

event takes place. In other words STEM is applicable where nodes have two states

1. Monitor state, where nodes monitor and no event takes place. 

2. Transfer state: where event is detected and data has to be transmitted. 

 On the Wake up channel time is divided into sleep period and listen period, these together are 

called wake up period. This can be seen in the diagram below

 

 

 
 Channel in STEM

There will be two transceivers in every sensor node. One is for wake up channel and other is 

for data channel. 

- The transceiver of the data channel: It will always be in sleep mode until some has to 

received or transmitted by the node 

- The transceiver of the wake up channel: It will be sleep in sleep period and be active in listen 

period. During the listen period the wake up channel receiver is switched on and the node 

waits to check if any data is to be received if so the data channel transceiver is switched on 

or else the wake up channel transceiver goes to sleep. 

- The STEM protocol has two flavors; they are STEM-B and STEM-T. 

- In STEM-B: a node which wishes to transmit to another node, sends beacons periodically on 

the wake up channel. This beacon contains the address of transmitter and receiver. The 

receiver detects the beacons during its listen period and acknowledges the transmitter, and 

then both shift to data channel and exchange data. 



 

 

 

- In STEM-T: The transmitter sends busy tone on wake up channel for a long enough time to 

hit the receivers listen period. As there is no address of the receiver in the busy tone all 

neighboring nodes which hear busy shift to data channel, however on receiving the data, 

only the node for which the data was intended will reply and all others go back to sleep. 

Advantages: Lower Latency. Disadvantages: More complex, High energy consumption 

 S-MAC *** 

 AC stands for Sensor MAC. This protocol tries to reduce energy consumption due to overhearing, 

idle listening and collision. S-MAC adopts a duty-cycle approach. In this protocol also every node 

has two states, sleep state and active state. Unlike STEM, S-MAC does not use two channels. A node 

can receive and transmit data during its listen period. 

 Strategy: The sensor node periodically goes to the fixed listen/sleep cycle. A time frame in S- 

MAC is divided into two parts: one for a listening session and the other for a sleeping session.

 SMAC adopts a periodic wake up scheme. SMAC tries to synchronize the listen periods of 

neighboring nodes.

 

 The listen period of a node is divided into three phases as shown figure 5.6. The listen period is 

the time during which a node is awake, rest of the time node is sleeping. The listen and sleep 

periods in the S-MAC are fixed intervals.

 Three phases of listen period in S-MAC:

1. Sync phase: In this phase node x accepts SYNCH packets from its neighbors. These packets, 

the neighbors describe their own schedule and x stores their schedule in a table. Node x’s 

SYNCH phase is subdivided into time slots and x’s neighbors contend according to a CSMA 

scheme with additional back-off. SYNC packet is used to synchronize periodically. The SYNC 

packet contains senders address and time of its next sleep. The next sleep time is according 

to the sender, the receiver will adjust its timers after it receives the SYNC packet and 

updates the neighbor’s schedule. 

2. RTS phase: During this phase x listens for RTS packets from neighboring nodes. In S-MAC, 

the RTS/CTS handshake is used to reduce collisions of data packets. Due to hidden-terminal 

situations. Again, interested neighbors contend in this phase according to a CSMA scheme 

with additional back-off. 



 

 

 

3.  CTS phase: In the third phase, node x transmits a CTS packet if an RTS packet was received 

in the previous phase. After this, the packet exchange continues, extending into x’s nominal 

sleep time. 

 In SMAC long data messages are fragmented and sent form transmitter to receiver. The receiver 

has to acknowledge for every fragment, else it is retransmitted. A series of fragments are sent 

with only one CTS and RTS message. This method is called as message passing. A protocol called 

T-MAC is proposed which is similar to S-MAC but with variable Listen and Sleep periods, this 

will help to suit the listen and sleep periods according to the load in the network.

 The main concept in SMAC is that, all the neighboring nodes form virtual clusters and 

synchronize their sleep and listen periods. They communicate during their listen periods and 

sleep rest of the time. The immediate neighbors of nodes, which are transmitting and receiving, 

sleep until the communication is completed.

 The NAV mechanism can be readily used to switch off the node during ongoing transmissions to 

avoid overhearing. When transmitting in a broadcast mode.

 

 

 S-MAC also adopts a message-passing approach (illustrated in Figure 5.7), where a message 

is a larger data item meaningful to the application. 

 In-network processing usually requires the aggregating node to receive a message 

completely. S-MAC includes a fragmentation scheme working as follows. 

o A series of fragments is transmitted with only one RTS/CTS exchange between the 

transmitting node A and receiving node B. 

o After each fragment, B has to answer with an acknowledgment packet. All the packets 

(data, ack, RTS, CTS) have a duration field and a neighboring node C is required to set 

its NAV field accordingly. 



 

 

 

 In S-MAC, the duration field of all packets carries the remaining length of the whole 

transaction, including all fragments and their acknowledgments. Therefore, the whole 

message shall be passed at once. If one fragment needs to be retransmitted, the remaining 

duration is incremented by the length of a data plus ack packet, and the medium is reserved 

for this prolonged time. 

 S-MAC contributes in these ways;

- Reduction of idle listening(as nodes sleep and not stay in idle state), 

- Collision and overhearing avoidance by using RTS and CTS, and saving energy and time, by 

sending a series of fragments of a long message together, rather than going for contention 

after sending every fragment. 

 Advantages of S-MAC :

- The battery utilization is increased implementing sleep schedules. 

- This protocol is simple to implement, long messages can be efficiently transferred using 

message passing technique. 

 Disadvantages of S-MAC:

- RTS/CTS are not used due to which broadcasting which may result in collision. 

- Adaptive listening causes overhearing or idle listening resulting in inefficient battery usage. 

- Since sleep and listen periods are fixed variable traffic load makes the algorithm inefficient. 
 

 The mediation device protocol 

 Compatible with the P2P communication mode of the 802.15.4 WPAN standard. 

 Each node go into sleep periodically and wakeup for short periods to receive packets from 

neighbors. 

 No global time, each node has its own schedule. Does not take care of its neighbors sleep 

schedules. 

 At wakeup, a node transmits a short query beacon with its node address; no packets? Go 

back to sleep. 

 The dynamic synchronization approach achieves this synchronization without requiring the 

transmitter to be awake permanently to detect the destinations query beacon. To achieve 

this, a mediation device (MD) is used. 

 The MD is not energy constrained and can be active all the time; this scenario is illustrated 

in Figure 5.8. Because of its full duty cycle, the MD can receive the query beacons from all 

nodes in its vicinity and learn their wakeup periods. 

 
Working of MD protocol: 

 Assume if node A wants to transmit a packet to node B, then Node A announces this to the 

MD by sending periodically request to send (RTS) packets, which the MD captures.



 

 

 

 Node A listens for answers from the MD has received A’s RTS packet, it waits for B’s next query 

beacon.

 
 

 The MD answers this with a query response packet, indicating A’s address and a timing offset, 

which lets B know when to send the answering clear to send (CTS) to A such that the CTS packet 

hits the short answer window after A’s next RTS packet.

 Therefore, B has learned A’s period. After A has received the CTS packet, it can send its data 

packet and wait for B’s immediate acknowledgment.

 After the transaction has finished, A restores its periodic wakeup cycle and starts to emit query 

beacons again.

 Node B also restores its own periodic cycle and thus decouples from A’s period.

Advantages MDP: 

 It does not require any time synchronization between the nodes.

 It is a power efficient protocol, since most of the energy burden is shifted to the power 

unconstrained Median Device.

 All nodes can be in the sleep state most of the time and have to spend energy only for the 

periodic beacons.

 Transmitter can synchronize with the receiver with very low duty cycles.

Drawbacks: 

 Bacon signal and ongoing transmissions may collide repeatedly when nodes have the same 

period and their wakeup periods overlap

 The mediation device is energy unconstrained, this is against to WSN concept.

 Need sufficient mediation devices to cover all nodes.
 



 

 

 

 Wakeup Radio concepts (WuR): 

 Wake up Radios are the basic concept for the on-demand communications scheme.

 The WuR handles the sending and receiving of wake up messages that switch on the main 

processing unit or the main radio of the required node.

 The ideal situation is to avoid idle state; A wakeup receiver is necessary: it does not need  

power but can detect when a packet starts to arrive; for example it suffices for it to raise an 

event to notify other components of an incoming packet; upon such an event, the main receiver 

can be turned on and perform the reception of the packet.

 The wakeup radio concept tries to attend the ideal situation by using the wakeup receiver idea;

 One of the proposed MAC protocol assumes the presence of several parallel data channels, 

separated either in frequency (FDMA) either in codes (CDMA); a node wishing to transmit a 

data packet randomly picks one of the channels and performs a carrier – sensing operation; if 

the channel is busy, the operation is repeated; after a certain number of tries the node backs off 

for a random time and starts again; if the channel is idle, the node sends a wakeup signal to the 

receiver indicating also the channel to use; the receiver wakes up its main data receiver, tunes 

to the indicated channel and data transfer can proceed; afterwards, the main receiver is sent 

back to its sleep mode.

 Advantages:

o Only the low – power wakeup transceiver has to be switched on all the time; 

o The scheme is naturally traffic adaptive; the MAC is more and more active as the traffic 

load increases. 

 Disadvantages:

o Difficult hardware solution for such an ultralow power wakeup receiver. 

o The range of the wakeup radio and the data radio should be the same. 

o MAC address should be unique within its two – hop neighborhood. 

o This schemes critically relies on the wakeup channel’s ability to transport useful 

information like node addresses and channel identifications. 

 Contention-based protocols 

 These protocols do not rely on transmission schedules, instead they require other 

mechanisms to resolve contention when it occurs. 

 The main advantage of contention-based techniques is their simplicity compared to most 

schedule-based techniques. 

o Schedule-based MAC protocols must save and maintain schedules or tables indicating 

the transmission order. 

o  Most contention-based protocols do not require to save, maintain, or share state 

information. 



 

 

 

o This also allows contention-based protocols to adapt quickly to changes in network 

topologies or traffic characteristics. 

 However, they typically result in higher collision rates and overheads due to idle listening 

and overhearing (overheads usually refer to additional bits in a packet or additional packets 

such as control packets) 

 They may also suffer from fairness issues (i.e., some nodes may be able to obtain more 

frequent channel accesses than others 

 A contention-based protocol (CBP) is a communications protocol allow many wireless users 

to use the same radio channel without pre-coordination. 

 The "listen before talk" is the basic concept of contention-based protocol. 

 Contention – based protocols are appropriate in case of a network that is idle for long times. 

 Two major contention based protocols discussed here 

1. CSMA Protocols 

2. PAMAS (Power Aware Multi-access with Signaling) Protocol 

 

1. CSMA Protocols: 

 CSMA protocols are contention-based, where neighbors try their luck to transmit their packets. 

 Procedure for CSMA 

o Whenever have data, sense the channel first 

o If the channel is Idle, transmit data immediately. 

o If channel is busy, wait for some random amount of time, again sense the channel. 

o If channel is free transmit data immediately. 

 Steps involved in CSMA protocol

1. Node gets a new packet for transmission it starts with a random delay and initializes trial 

counter with zero. 

2. The purpose of the random delay for node synchronization by the external event. During this 

random delay, the node’s transceiver can be put into sleep mode. 

3. During the following listen period, the node performs carrier sensing. If the medium is 

found to be busy and trials counter incremented and the node goes into the backoff mode. 

4. In the backoff mode, the node waits a random amount of time, which can depend on the 

number of trials and during which the node can sleep 

5.  The backoff mode finishes, the node listens again. If the medium is busy and the node has 

exhausted its maximum number of trials, the packet is dropped. 

6. If the medium is idle, the node transmits an RTS packet and enters the “Await CTS” state. 

7. In case no CTS packet arrives or a CTS packet for another transaction is received, the node 

either enters the backoff mode or drops the packet, depending on the value of num retries. 



 

 

 
 
 

8. If the CTS packet arrives, the node sends its data packet and waits for an acknowledgment. 

9. This acknowledgment can be either an explicit acknowledgment packet, or the parent node 

piggybacks the acknowledgment 

10. Several variants of this skeleton (no random delay vs. random delay, random listening time 

vs. constant listening time, and fixed window backoff vs. exponentially increasing backoff 

vs. exponentially decreasing backoff vs. no backoff) have been investigated in a single-hop 

scenario with a triggering event. 

2. PAMAS (Power Aware Multi-access with Signaling) Protocol:**** 

 PAMAS is originally designed for ad hoc networks.

o The PAMAS protocol attempts to avoid unnecessary energy expenditure caused by 

overhearing. 

 



 

 

 

o It provides detailed overhearing avoid mechanism and No idle listening solution 

o It combines busy tone with RTS/CTS handshaking 

o Uses two separate channels to prevent collision among data transmissions: Data channel 

and control channel 

o All the signaling packets (RTS, CTS, busy tones) are transmitted on the control channel, 

while the data channel is reserved for data packets. 

o The separate signaling channel allows nodes to determine when and how long to power 

down their wireless transceivers. 

The state diagram outlining the behavior of our protocol is illustrated in Figure 4. 

 As indicated in the figure, node may be in any one of six states , They are

1. Idle state: When a node is not transmitting or receiving a packet, or does not have any packets 

to transmit, or does have packets to transmit but cannot transmit (because a neighbor is 

receiving a transmission) it is in the Idle state. 

2. Await-CTS state: When it gets a packet to transmit it transmits a RTS and enters the 

AwaitCTS state. 

3. BEB (Binary Exponential Backoff) state: If the awaited CTS does not arrive the node goes 

into binary exponential backed (the BEB state in the figure). 

4. Await Packet: The intended receiver upon transmitting the CTS enters the Await Packet state 

5.  Receive Packet state: If the packet does not begin arriving within one roundtrip time (plus 

processing time) it returns to the Idle state. If the packet does begin arriving it transmits a 

busy tone over the signaling channel and enters the Receive Packet state. 

6. Transmit Packet state: If a CTS does arrive it begins transmitting the packet and enters the 

Transmit Packet state. 

 



 

 

 

 Initiating a data transfer:

o PAMAS device sends an RTS message over the control channel to the receiver. 

o Receiver responds with CTS if it does not detect activity on the data channel and has not 

overheard other recent RTS or CTS messages. 

o If the source does not receive a CTS within a specific timeout interval, it will attempt to 

transmit again after a back-off time (exponential back-off algorithm). 

o Otherwise, it begins data transmission and the receiver node issues a busy tone over the 

control channel (whose length is greater than twice the length of a CTS). 

o The receiver device also issues a busy tone over the control channel whenever it receives an 

RTS message or detects noise on the control channel while it receives a frame. 

- Done to corrupt possible CTS message replies to the detected RTS, thereby blocking any 

data transmission of the receiverʼs neighbors. 

o Every node in a PAMAS network independently decides when to power off its transceiver. 

o Specifically, a node decides to turn off its transceiver whenever one of two conditions holds: 

- a neighbor begins a transmission and the node has no frames to transmit. 

-  a neighbor transmits a frame to another neighbor, even if the node has frames to 

transmit. 

o A node can easily detect either condition by : 

- Overhearing its neighbor’s transmissions (condition 1) or 

- Overhearing its neighbor’s busy tone (condition 2) 

o A node can identify how long to power down its transceiver by embedding the size or 

expected transmission duration into messages. 

o However, when a transmission begins while a node is still asleep, it does not know how long 

this transmission will last and how long it should continue to sleep. 

o Therefore, the node issues a probe frame (containing a certain time interval) over the 

control channel to all transmitting nodes in its neighborhood. 

- All transmitters that will complete during this interval respond with their predicted 

completion time. 

- If such a response is received by the awakening node without collision, it can return to 

the sleep mode until the completion time indicated by the transmitting node. 

- If multiple transmitters respond and their responses collide, the node reissues the probe 

frame with a shorter time interval. 

- Similarly, if the node did not receive a response, it can reissue the probe with a different 

time interval. 

- In effect, the node chooses time intervals to perform a binary search to identify when the 

last ongoing transmission will end. 
 



 

 

 

 Schedule-based protocols*** 

In Scheduled Based MAC Protocols, schedule nodes onto different sub-channels. Examples: TDMA, 

FDMA, CDMA 

 Advantages

o Collision-Free 

o Low idle listening and overhearing overheads 

o Explicitly assign transmission and reception opportunities to nodes and let them sleep all 

other times. 

 Drawback

o Requires time synch and not robust to changes. 

o Low throughput and high latency even during low contention. 

o Wake up and listen only during its neighbor transmission. 

o The schedule of a node may require a significant amount of memory. 

 Following are energy efficient schedule based protocols for WSN, since they consume less 

energy hence they do not waste energy in collision and idle listening. They are

o LEACH (Low Energy Adaptive Clustering Hierarchy) protocol 

o SMACS ( Self-Organizing Medium Access Control for Sensor Networks ) protocol 

o TRAMA (Traffic-Adaptive Medium Access) protocol 

 

 LEACH (Low Energy Adaptive Clustering Hierarchy) protocol***** 

 LEACH protocol is a TDMA based MAC protocol.

 It is a less energy adaptive clustering hierarchy protocol.

 It is the first protocol of hierarchical routing which proposed data fusion; it is of milestone 

significance in clustering routing protocol.
 



 

 

 

 The main goal of cluster based sensor networks is to decrease system delay and reduce energy 

consumption.

 LEACH for micro sensor networks which achieves energy efficient, scalable routing and fair 

media access for sensor nodes.

 The principal aim of this protocol is to improve the lifespan of wireless sensor networks by 

lowering the energy consumption required to create and maintain Cluster Heads

 This protocol using randomized rotation of cluster heads

o Cluster heads: collect data and applies process and aggregation on data before 

forwarding it to base station. 

 Network organization in LEACH:

o LEACH partitions the nodes into clusters and in each cluster a dedicated node (see fig 2), the 

cluster head, is responsible for creating and maintaining a TDMA schedule; all the other 

nodes of a cluster are member nodes. To all member nodes, TDMA slots are assigned, which 

can be used to exchange data between the member and the cluster head; there is no peer-to- 

peer communication. With the exception of their time slots, the members can spend their 

time in sleep state. The cluster head aggregates the data of its members and transmits it to 

the sink node or to other nodes for further relaying. 

o After the clusters have been formed, each cluster head picks a random CDMA code for its 

cluster, which it broadcasts and which its member nodes have to use subsequently. This 

avoids a situation where a border node belonging to cluster head A distorts transmissions 

directed to cluster head B, shown in Figure 5.10. 

 

o Typically ≈5% cluster heads are designated to achieve energy and BER tradeoff. 

o LEACH can achieve a seven to eight times lower overall energy dissipation compared to the 

case where each node transmits its data directly to the sink, and between four and eight 

times lower energy than in a scenario where packets are relayed in a multi-hop fashion. 

o In addition, since LEACH distributes the cluster head role fairly to all nodes, they tend to die 

at about the same time. 



 

 

 

o Operation of leach protocol consists of several rounds with two phases in each round. 

They are Set-up phase and Steady phase (See Figure 5.11). 

 

Phases of leach protocol are as follows: 

A. Set-up phase: In the set-up phase, the main goal is to make cluster and select the cluster head for 

each of the cluster by choosing the sensor node with maximum energy. Set-up phase has three 

fundamental steps: 

1. Cluster head advertisement 

2. Cluster set up 

3. Creation of transmission schedule 

B. Steady phase: In steady phase, cluster nodes send their data to the cluster head. The member 

sensors in each cluster can communicate only with the cluster head via a single hop transmission. 

Cluster head aggregates all the collected data and forwards data to the base station either directly 

or via other cluster head along with the static route defined in the source code. After predefined 

time, the network again goes back to the set-up phase. 

 The advantages of LEACH protocol are:

1. Reduced the traffic in the entire network due to data aggregation by cluster Heads. 

2. Single hop routing from nodes to cluster head it results in saving energy. 

3. It increases the lifetime of the sensor network. 

4. Location information of the nodes to create the cluster is not required. 

5. It does not need any control information from the base station. 

 Demerits which are as follows are:

1. It does not give any idea about the number of cluster heads in the network. 

2. Due to any reason Cluster head dies, the cluster will become useless because the data 

gathered by the cluster nodes would never reach its destination. 

3. Uneven distribution of Clusters cause an increase in energy consumption. 

4. It not be able to cover large geographical areas of some square miles or more. 



 

 

 

 SMACS (Self-Organizing Medium Access Control for Sensor Networks) protocol*** 

 SMACS is a distributed protocol suite which enables a collection of nodes to discover neighbors 

and establish schedules for communicating with them without the need of a “master” node.

 It is an infrastructure-building protocol that forms a flat topology for sensor networks.

 It combined neighbor discovery and channel assignment phases.

 SMACS—Assumptions:

o The available spectrum is subdivided into many channels and each node can tune its 

transceiver to an arbitrary one. 

o Most of the nodes are stationary and remain as such for a long time 

o Each node divides its time locally into fixed-length super frames of Tframe length 

o Super frames are subdivided into timeslots. 

 Link organization between SMACS nodes:

o The goal of SMACS is to detect neighboring nodes and to set up exclusive links to these. 

o  A link is bidirectional TDMA link with receive slot and a transmit slot between the nodes 

and transmit all packets through this link. 

o The assignment of links shall be such that no collisions occur at receivers. To achieve this, 

SMACS takes care that for a single node the time slots of different links do not overlap. 

o Furthermore for each link randomly one out of a large number of frequency channels/CDMA 

codes is picked and allocated to the link. 

o It is not required that a node and its neighbors transmit at entirely different times. In this 

case, however, they must transmit to different receivers and have to use different 

frequencies/codes. 

o After link setup, the nodes wake up periodically (once per superframe) in the respective 

receive time slots with the receiver tuned to the corresponding frequency or with the 

correct CDMA code at hand; the transmit time slots are only used when required. 

 Illustration of Neighbor discovery and link setup in SMACS:

It is explained by consider four different cases. See figure 5.12 

Case1: Suppose that nodes x and y want to set up a link. Assume x is turns on first and listens on a 

fixed frequency band for a random amount of time. If nothing is received during this time, node x 

sends an invitation message TYPE1(x, unattached) message, indicating its own node ID and the 

number of attached neighbors, which so far is zero. When any neighbor z of node x receives this 

message, it waits for a random but bounded amount of time and answers with a TYPE2(x, z, n) 

message, indicating its own address, x’s address and its number of neighbors n. Now, suppose that 

the so-far unconnected node y answers first – with TYPE2(x, y, unattached) – and x receives this 

message properly. Since y sent the first answer, x invites y to construct a link by sending  a 

TYPE3(y, –) message, carrying the identification of the “winning” node y and no further 



 

 

 

parameters. Now, node y knows that (i) it has been selected, and (ii) it can pick any time slot it 

wants since neither x nor y has any link allocated so far. Node y answers to node x with a link 

specification, that is, two time slot specifications and a frequency/code, using a TYPE2(x, y, 

LinkSpec) message. 

 

o Any other node z loosing against y goes back into sleep mode and tries again at some later 

time. The nodes repeat their invitations periodically using TYPE1 (・, ・) messages. 

Case 2: Assume where node x already has some neighbors but the winning node y has none so far. 

Therefore, x sends a TYPE1(x, attached) message and y manages to answer first with its TYPE2(x, y, 

unattached) message. After this, node x knows that it can schedule the connection to y freely, since 

y has no obligations so far. Node x picks two convenient time slots and a frequency and sends a 

TYPE3(y, LinkSpec) message to y. Again, since y has no neighbors so far, y adopts the superframe 

phase of x. Finally, node y answers with TYPE2(x, y, –) message, carrying an empty link 

specification (meaning that x’s link specification is adopted). 

Case3: In this case, node x does not have any neighbor yet, but y has. Therefore, y answers to x’s 

TYPE1(x, unattached) with a TYPE2(x, y, attached) message. Node x proceeds with sending a 

TYPE3(y, –) message without link specification to y, and it is y’s turn to pick the time slots and 

frequency. Accordingly, y sends back a TYPE2(x, y, LinkSpec) to x. 

Case 4: In the final case, both x and y are already attached to other nodes and their superframes are 

typically not aligned. Accordingly, x sends a TYPE1(x, attached) message and y answers with a 

TYPE2(x, y, attached) message. Node x answers with a TYPE3(y, Schedule) message, which  

contains its entire schedule as well as timing information allowing y to determine the phase shift 

between x and y’s superframes. After receiving this information, node y determines time slots that 

are free in both schedules, and which are not necessarily aligned with any time slot boundaries in 

either schedule. 



 

 

 

 Traffic-Adaptive Medium Access (TRAMA) Protocol*** 

 TRAMA reduces energy consumption by providing collision-free transmissions and low-power 

idle state

 Assumes single time-slotted channel and uses a distributed election scheme to determine which 

node can transmit at a particular slot.

 The schedules are constructed in a distributed manner and on an on-demand basis.

 The protocol assumes that all nodes are time synchronized and divides time in to

o Random access period: signaling slots 

o Scheduled access period: transmission slots 

 A random access period followed by a scheduled-access period is called a cycle.

 The protocol itself consists of three different components:

1. The Neighborhood Protocol(NP): 

2. The Schedule Exchange Protocol (SEP): 

3. The Adaptive Election Algorithm (AEA): 

1. The Neighborhood Protocol (NP) in TRAMA: 

 Propagates one-hop neighbor information among neighboring nodes during random access 

period (contention based channel acquisition and signaling). 

 TRAMA starts in random access mode where each node selects a slot randomly. 

 Nodes can only join the network during the random access periods (occur more often in 

dynamic networks). 

 NP gathers neighborhood information by exchanging small signaling packets, carrying 

incremental neighborhood updates. 

 If no updates, the signaling packets serve as “keep-alive” beacons. 

 A node times out its neighbor if it does not hear from it for a certain period of time 

 The updates are transmitted to ensure 99% probability of success. 

 

2. The Schedule Exchange Protocol (SEP): 

 Exchange traffic-based information, or schedules (information on traffic originating from a 

node), with neighbors. 

 Establishes and maintains traffic-based schedule information required by the transmitter 

(e.g. slot re-use) and the receiver (i.e. sleep state switching) 

 A node’s schedule captures a window of traffic to be transmitted by the node; schedules 

have timeouts. 

 Nodes announce their schedule via schedule packets. 

 The intended receiver information is conveyed using a bitmap. 

 A schedule summary is also send during data transmission to minimize effects of packet loss 



 

 

 

in schedule dissemination. 

 Nodes maintain schedule information for their one-hop neighbors, which is consulted when 

needed. 

 An unused slot is called Changeover slot; all nodes listen during the Changeover slot of the 

transmitter to synchronize their schedule. 

3. The Adaptive Election Algorithm (AEA): 

 Selects transmitters and receivers to achieve collision-free transmission using the 

information from NP and SEP. 

o Random transmission -> collisions 

o Transmitters without receivers -> energy waste 

 At any given time slot t during the scheduled access period, the state of a node u is 

determined based on its two-hop neighborhood information and the schedules of it’s one- 

hop neighbors; possible states are: transmit (TX), receive (RX), or sleep (SL) 

o Node u is in TX state if (1) u has the highest priority among its contending set and 

(2) u has data to send 

o Node u is in RX state when it is the intended receiver of the current transmitter 

o Otherwise the node can be turned off to SL state 

 TRAMA—Winners: 

o The state of a node u depends on the Absolute Winner and the schedules of its one- 

hop neighbors 

o From node u’s perspective, the Absolute Winner at a time slot t can be: 

- Node u itself 

- Node v that lies in the two-hop neighborhood of node u in which case the 

Alternate Winner atx(u) is to be considered if hidden from node v 

- Node w that lies in node u’s one-hop neighborhood 

o The Absolute Winner is the assumed transmitter unless the Alternative Winner is 

hidden from the Absolute Winner and it belongs to the Possible Transmitter Set. 

 In more complicated situation: TRAMA energy saving depends on load situation. It is 

depicted in Figure 5.13. 



 

 

 

 Here, node D has the highest priority in B’s two hop neighborhood, but, on the other hand 

node, A has highest priority in its two-hop neighborhood. 

 The adaptive election algorithm of TRAMA provides approaches for resolving this situation 

and also for allowing nodes to reuse their neighbors’ unused winning slots. 

 Advantage of TRAMA Protocol 

o Higher percentage of sleep schedules and collision free transmissions are achieved 

compared to CSMA based protocols. 

o Higher maximum throughput than contention-based protocols. 

o TRAMA protocol is suitable for applications require high energy efficiency and 

throughput. 

 Disadvantage of TRAMA Protocol 

o Not suitable delay sensitive application, since it takes more delay. 

o TRAMA is a feasible solution only if the sensor nodes have sufficient resources. 
 

 
 

Chapter 7: Naming and addressing 

 Fundamentals: Naming and addressing schemes are used to denote and to find things. In 

networking, names and addresses often refer to individual nodes as well as to data items 

stored in them. 

 Name: Denote/refer to “things”

o Nodes, networks, data, transactions, … 

o Often, but not always, unique (globally, network-wide, locally) 

o Ad hoc: nodes –WSN: Data! 

 Addresses: Information needed to find these things

o Street address, IP address, MAC address 

o Often, but not always, unique (globally, network-wide, locally) 

o Addresses often hierarchical, because of their intended use in, e.g., routing protocols 

 Services to map between names and addresses

o E.g., DNS 

 Sometimes, same data serves as name and address

o IP addresses are prominent examples 
 

 

 Use of addresses and names in (sensor) networks 

1. A unique node identifier (UID): UID might be a combination of a vendor name, a product 

name, and a serial number, assigned at manufacturing time. 

2. MAC address, Network address, Network identifiers, Resource identifiers 



 

 

 

 Assignment of MAC addresses*** 

 Address allocation: Assign an entity an address from a given pool of possible addresses

o Distributed address assignment (centralized like DHCP does not scale) 

 Address deallocation: Once address no longer used, put it back into the address pool

o Because of limited pool size 

o Graceful or abrupt, depending on node actions 

 Address representation

o Format for representing addresses must be negotiated and implemented 

 Conflict detection & resolution (Duplicate Address Detection)

o What to do when the same address is assigned multiple times? 

o Can happen e.g. when two networks merge 

- Unnecessary Deallocation/Reallocation should be avoided 

 Binding

o Map between addresses used by different protocol layers 

o E.g., IP addresses are bound to MAC address by ARP 

 Why not globally unique addresses?

o Globally unique addresses significantly simplify address management. 

o Must be judged relative to the impact on overhead 

o E.g., Ethernet 48-bit MAC address 

- 500-octet frame (e.g., IP): overhead of 1.2% 

- 4-octed frame (e.g., WSN): overhead of 150% 

o MAC addresses only need to be unique within 2-hop neighborhood. 
 

 

 Distributed assignment of network wide addresses 

Option 1: Let every node randomly pick an address 

o For given size of address space, unacceptable high risk of duplicate addresses 

Option 2: Avoid addresses used in local neighborhood 

Option 3: Repair any observed conflicts 

o Temporarily pick a random address from a dedicated pool and a proposed fixed 

address 

o Send an address request to the proposed address, using temporary address 

o If address reply arrives, proposed address already exists 

o Collisions in temporary address unlikely, as only used briefly 

Option 4: Similar to 3, but use a neighbor that already has a fixed address to perform 

requests 



 

 

 

 A node randomly picks an address from a given address range between 0 and 2m − 1 and an 

address can thus be represented with m bits. The address space has a size of n = 2m addresses.

 A node chooses its address without any prior information, leads problems, as is shown in the 

following example 7.1.

 
 
 

 



 

 

 

Chapter 10: Topology control 

10.1 Motivation and basic ideas: Typical characteristic of WSN is the possibility of deploying 

many nodes in a small area leads to dense network deployment see fig 10.1. 

 
 In a very dense networks, too many nodes might be in range for an efficient operation. This 

result following problems

o Too many node collisions 

o Many nodes interfere with each other 

o Too complex operation for a MAC protocol, 

o Too many paths to choose from for a routing protocol, 

o Nodes might needlessly use large transmission power to talk to distant nodes directly. 

o Nodes might needlessly use large transmission power to talk to distant nodes directly. 

 
 Some of these problems can be overcome by topology-control techniques

o Idea: Make topology to reduce complex 

- Topology: Which node is able/allowed to communicate with which other nodes 

- Topology control needs to maintain invariants, e.g., connectivity. 

 

 Options for topology control

 



 

 

 

 Hierarchical networks by clustering*** 

Due to scarce resources in WSN, direct communication of sensor node with BS or multihop 

communication of sensor nodes towards BS is not practical as energy consumption is high which 

results in early expiry of sensor nodes as shown in Figure 10.1. 

 

 

 Direct communication has its disadvantages:

- High energy consumption. 

- Duplication of data (SN that were close to each other, sending data with very small variation). 

- Farthest nodes dying quickly. 

- To overcome above problems, hierarchical cluster approach is used. 
 

 Definition of clusters: 

- Partition nodes into groups of nodes called clusters 

- One controller/representative node per cluster called Clusterheads 
 
 

 
Figure 10.2: Cluster approach in WSN 

Figure 10.1: Direct 

communication in WSN 



 

 

 

- Formally, given a graph G = (V ,E), clustering is simply the identification of a set of subsets 

of nodes Vi , i = 1, . . . , n such that ∪i=1,...,nVi = V . 

- Each node in exactly one group 

- Except for nodes “bridging” between two or more group 

- Typically: all nodes in a cluster are direct neighbors of their clusterhead 

- Clusterheads are also a dominating set, but should be separated from each other – they form 

an independent set 

- Are there clusterheads? for each set Vi there is a unique node Ci , the clusterhead, so 

Groups can have clusterheads 

- May clusterheads be neighbors? Yes, often desirable to have clusterheads separated. 

o Formally, clusterheads should form an independent set: 
 

o Typically: clusterheads form a maximum independent set. See figure10.7 

 

 
- May clusters overlap? Do they have nodes in common? 

To create maximum independent cluster set cluster may overlap and non- 

clusterhead nodes may common for both clusters. Figure 10.18 highlights these possibilities. 

 

 
 

- How do clusters communicate? They communicate through gateways. Some nodes need to 

act as gateways between clusters. If clusters may not overlap, two nodes need to jointly act 

as a distributed gateway. 



 

 

 

 
 

 
 

- How many gateways exist between clusters? 

Depending on the optimization goal for the eventual connected dominating set. 

- What is the maximal diameter of a cluster? Depends on nuber of hops between two clusters. 

- Is there a hierarchy of clusters? Clusterheads impose a hierarchy of nodes onto the network. 
 

 

 A basic idea to construct independent sets 

- Independent sets exploits the inherently local nature of being independent. 

- The idea is thus for every node to communicate with its neighbors and to locally select 

nodes to join the set of independent nodes (to become clusterheads in the end). 

-  Distributed algorithm used to compute independent sets starts out by marking all nodes as 

being ready to become clusterheads. 

- In the first step, each node determines its local ranking property and exchanges it with all of 

its neighbors. 

- Once this information is available, a node can decide to become a clusterhead if it has the 

largest rank. Among all its as-yet-undecided neighbors. It changes its state accordingly and 

announces its new state to its neighbors 

- The algorithm terminates once all nodes have decided to become either a clusterhead or a 

cluster member. 

- This algorithm is illustrated with a simple linear network in Figure 10.20. 



 

 

 

 In step 1, nodes 2 and 5 cannot become clusterheads because their neighboring nodes 3 and 6 

have not yet decided and would, potentially, take precedence over them.

 Once nodes 3 and 6 have learned about node 7 being a clusterhead in their vicinity, they decide 

to become cluster members and propagate this information to nodes 2 and 5. Then, these nodes 

can become clusterheads in step 3. Use some attribute of nodes to break local symmetries.

 Make each node a clusterhead that locally has the largest attribute value. Node identifiers, 

energy reserve, mobility, weighted combinations (all types of variations have been looked at) 

are used evaluate the attribute.

 Once a node is dominated by a clusterhead, it abstains from local competition, giving other 

nodes a chance

 
 Connecting clusters 

 Once the clusterheads have been found, it necessary to determine the gateways between the 

clusters.

 How to connect the clusters, how to select gateways? Put simply, this problem is reduced again 

to the Steiner tree problem.

 It suffices for each clusterhead to connect to all other clusterheads that are at most three hops. 

Resulting backbone is connected.

 While for some networks, this might mean more connections than necessary, but there are 

networks where all this links are needed to ensure connectivity.

 In addition to this basic connectivity consideration, other aspects like load balancing between 

multiple gateways can be considered.

 Rotating clusterheads 

 Serving  as  a  clusterhead  can  put  additional  burdens  on  a  node  for MAC coordination, 

routing and other services. 

 Let this duty rotate among various members. Periodically reelect cluserhead based on 

energy reserves are used as discriminating attribute. 

 LEACH protocol used to determine an optimal percentage P of nodes to become 

clusterheads in a network with following procedure. 

- Use 1/P rounds to form a period 

- In each round, nP nodes are elected as clusterheads 

- At beginning of round r, node that has not served as clusterhead in this period becomes 

clusterhead with probability P/(1-p(r mod 1/P)) 

 Multihop clusters. 

 Clusters with diameters larger than 2 can be useful, e.g., when used for routing protocol 

support. Formally: Extend “domination” definition to also dominate nodes that are at most 



 

 

 

d hops away. Goal: Find a smallest set D of dominating nodes with this extended definition  

of dominance. Only somewhat complicated heuristics exist. 

 Different tilt: Fix the size (not the diameter) of clusters. Idea: Use growth budgets – amount 

of nodes that can still be adopted into a cluster, pass this number along with broadcast 

adoption messages, reduce budget as new nodes are found. 

 Passive clustering: 

 In terms of energy consumption, one of the most expensive operations in a network is 

flooding. 

 Flooding can incur considerable overhead. This clustering overhead can be reduced if the 

information flow that is happening anyway during a flooding operation is leveraged to 

compute a clustering structure on the fly. Actively sending out any message for clustering as 

such is avoided; the approach called passive clustering. 

 The necessary information exchange is achieved by adding state information about each 

sender into any packet that is sent anyway, namely “initial”, “clusterhead”, “gateway”, and 

“ordinary node”. This distributes information about the state of neighboring nodes; it 

suffices to build a clustering structure that well approximates maximum independent sets 

with optimal gateway choice and is competitive with ID-based or degree-based algorithms. 

 The procedure works as follows: 

o Node to start a broadcast: Initial node 

o Nodes to forward this first packet: Clusterhead 

o Nodes forwarding packets from clusterheads: ordinary/gateway nodes and so on. Finally 

clusters will emerge at low overhead. 

 Conclusion for topology control:

o Topology control – namely, power control, backbones, and clustering – is a powerful means to 

change the appearance and properties of a network for other protocol layers 

o Various approaches exist to trim the topology of a network to a desired shape. 

o Most of them bear some non-negligible overhead. 

o Judicious use of topology control can significantly improve operational aspects of a network, 

such as lifetime. However, determining an optimal topology is usually prohibitively expensive 

and appropriate approximations and heuristics have to be used instead. 

Chapter 11. Routing protocols for WSN*** 

The design of routing protocols for WSNs is challenging because of several network 

constraints. WSNs suffer from the limitations of several network resources, for example, energy, 

bandwidth, CPU and storage. The design issues for routing protocols are limited energy capacity, 

Sensor locations, Limited hardware resources, Massive and random node deployment, Network 



 

 

 

characteristics and unreliable environment, Data Aggregation, Diverse sensing application 

requirements, Scalability etc.. 

In a multihop network, intermediate nodes have to relay packets from the source to the 

destination node. Such an intermediate node has to decide to which neighbor to forward an 

incoming packet not destined for itself. Typically, routing tables that list the most appropriate 

neighbor for any given packet destination are used. The construction and maintenance of these 

routing tables is the crucial task of a distributed routing protocol. Routing in wireless sensor 

networks differs from conventional routing in fixed networks in various ways. There is no 

infrastructure, wireless links are unreliable, sensor nodes may fail, and routing protocols have to 

meet strict energy saving requirements. Many routing algorithms were developed for wireless 

networks in general. All major routing protocols classes proposed for WSNs. Some of them are 

1. Energy-Efficient Routing 

2. Geographic Routing 

 

 Energy-efficient and unicast routing*** 

 Overview: In energy-efficient unicast routing consider a the network graph, assign to each link a 

cost value that reflects the energy consumption across this link, and pick any algorithm that 

computes least-cost paths in a graph. Modified Dijkstra’s shortest path algorithm to obtain routes 

with minimal total transmission power. Particularly interesting and good cost performance metric: 

is energy efficiency. Figure 11.3 shows an example scenario for a communication between nodes A 

and H including link energy costs and available battery capacity per node. Following are the goal to 

find energy efficient metrics 

 

 Minimize energy per packet (or per bit): Total energy required to transport a packet over a 

multihop path from source to destination. The goal is then to minimize, for each packet, this 

total amount of energy by selecting a good route. This cost metric can be easily included in 

standard routing algorithms. It can lead to widely differing energy consumption on different 

nodes. In the example of Figure 11.3, the minimum energy route is A-B-E-H, requiring 3 units of



 

 

 

energy. The minimum hop count route would be A-D-H, requiring 6 units of energy. 

 Maximize network lifetime: The network should be able to fulfill its duty for as long as 

possible. Several options exist

1. Time until the first node fails. 

2. Time until there is a spot that is not covered by the network 

3. Time until network partition (when there are two nodes that can no longer communicate 

with each other) 

 Routing considering available battery energy: The finite energy supply in nodes’ batteries is 

the limiting factor to network lifetime, it stands to reason to use information about battery 

status in routing decisions. Some of the possibilities are:

1. Maximum Total Available Battery Capacity: Choose that route where the sum of the available 

battery capacity is maximized. Path metric: Sum of battery levels. Example: A-C-F-H 

2. Minimum Battery Cost Routing (MBCR): Here routing cost can be measured as the reciprocal 

of the battery capacity. Path metric: Sum of reciprocal battery levels. Example: A-D-H. 

3. Min–Max Battery Cost Routing (MMBCR): Instead of using the sum of reciprocal battery 

levels, simply the largest reciprocal level of all nodes along a path is used as the cost for this 

path. Then, again the path with the smallest cost is used. In this sense, the optimal path is 

chosen by minimizing over a maximum. Example of Figure 11.3, route A-D-H (1/3) and 

ACFG (1/1) will be selected. 

4. Conditional Max–Min Battery Capacity Routing (CMMBCR): If there are routes along which all 

nodes have a battery level exceeding a given threshold. Then select the route that requires 

the lowest energy per bit. If there is no such route, then pick that route which maximizes the 

minimum battery level 

5. Minimize variance in power levels: To avoid some nodes prematurely running out of energy 

and disrupting the network. Hence, routes should be chosen such that the variance in 

battery levels between different routes is reduced 

 Minimum Total Transmission Power Routing (MTPR): Goal: guarantee that transmissions are 

successful. A given transmission is successful if its SINR exceeds a given threshold. The goal is to 

find an assignment of transmission power values for each transmitter (given the channel 

attenuation metric) such that all transmissions are successful and that the sum of all power 

values is minimized.

 Some example unicast protocols: 

1. Attracting routes by redirecting 

o Idea: nodes can overhear packet exchanges between other nodes 

o Process: 

- Energy requirement is included in the packet 



 

 

 

- When communication between two adjacent nodes X 31 and Z proceeds, a third node Y 

can decide whether it can offer a more energy-efficient route. 

2. Distance vector routing on top of topology control 

o Here lends itself to a formulation of an energy-efficient routing problem. Bellmann– 

Ford–type algorithm is used to find paths with minimal power consumption in the 

enclosure graph. 

3. Maximizing time to first node outage as a flow problem 

o It is a flow problem: Normal maximum flow algorithm are not applicable. 

o Two approximation algorithms: 

-  First algorithm: find a generalized description of the “costs” of a link (consider 

energy cost, initial and residual battery capacity.) 

- second algorithm: is a flow redirection algorithm 

- The core result is that system lifetime can be extended 34 up to 60% 

4. Maximizing time to first node outage by a max–min optimization 

o There are two algorithms 

- The max min zPmin approximation: The minimal remaining power in all nodes is the 

largest. 

Property: Require knowledge of battery power level. May pick a very expensive path. 

Sol: Pick a path having at most a power consumption of zPmin. 

-  The zone routing approximation can work without this information at only slightly 

reduced performance. 

5. Maximizing number of messages 

o The goal is to maximize the number of messages that can be sent over a network before it 

runs out of energy 

 Bounding the difference between routing protocols:

o The graph is partitioned into “spheres” Si that include all the nodes that are reachable from 

the base station in at most i hops. Then, all traffic has to go through the nodes of sphere S1, 

and because there are relatively few of these nodes, they limit the lifetime of the network 

shown in 11.4 



 

 

 

 
 
 
 

 

 Multipath unicast routing*** 

o Multiple paths between a given source/destination pair 

- Energy consumption across multiple path is therefore an option worthwhile exploring. 

- Fault-tolerance: multiple paths provide redundancy in that they can serve as “hot 

standbys” to quickly switch to when a node or a link on a primary path fails 

 Sequential Assignment Routing (SAR):

o Problem: computing such k-disjoint paths requires about k times more overhead than a 

single-path routing protocol. 

o SAR: require paths different neighbors of the sink. constructing trees outward from each sink 

neighbor; in the end, most nodes will then be part of several such trees 

 
 Constructing energy-efficient secondary paths:

o Concern:The energy efficiency of these secondary paths compared to the optimal primary path 

o For disjoint paths: 

- Primary path: via its best neighbor toward the data source neighbor. 

- This alternate path: forwarded toward the best neighbor that is not already on the 

primary path. 

o For braided paths: 

-  Require to leave out some nodes of the primary path but are free to use other nodes 

on the primary path. See figure 11.5 



 

 

 

 

 Simultaneous transmissions over multiple paths

o There is some delay in detecting the need to use a secondary path. 

o The idea: 

- assume node-disjoint paths 

- Send several copies of a given packet over these different paths to the destination. 

o This trades off resource consumption against packet error rates. 

 

 Randomly choosing one of several paths

o Each node maintains an energy cost estimate for each of its neighbors. 

o The next hop is randomly chosen proportional to the energy consumption of the path over 

this neighbor. 

 Trade-off analysis for multicast routing:

o Supporting such multiple paths in a network implies a trade-off between robustness and 

energy efficiency. 

o This tradeoff is analyzed by Krishnamachari et al. who compare the robustness gained by 

multiple paths with those owing to simply increasing transmission power. Result: Single 

path with a larger transmission power dominates. 

 Geographic routing*** 

o Geographical routing uses location information to formulate an efficient route search 

toward the destination. 

o Geographical routing is very suitable to sensor networks, where data aggregation is a useful 

technique to minimize the number of transmissions toward the base station by eliminating 

redundancy among packets from the different sources. Geographic routing addresses these 



 

 

 

two issues: 

1. Routing packets successfully given any topology 

2. Acquiring location information of nodes reflecting the given topology. 

 Two types of Geographical routing:

1. Geo-casting: sending data to arbitrary nodes in a given region. 

2. Position-based routing: Use position information to aid in routing. In particular in 

combination with a location service. 

 

 Basics of position-based routing 

 Some simple forwarding strategies:

1. “Most forward within range r” strategy: In a simple greedy forwarding approach, the packet 

is forwarded to that neighbor that is located closest to the destination. 

 

Figure 11.11 illustrates this scheme and immediately shows one principal shortcoming: in general, 

not able to find the shortest possible path (in hop count). This trade-off between simplified routing 

scheme and reduced efficiency is, in general, unavoidable. 

2. Nearest node with (any) forward progress: Idea: Minimize transmission power. 

3. Directional routing: Choose next hop that is angularly closest to destination. Choose next hop 

that is closest to the connecting line to destination. Problem: Might result in loops! 

4. The problem of dead ends: Simple strategies might send a packet into a dead end. Figure 11.12 

illustrates how an obstacle that blocks the direct path between source S and destination D 

interrupts communication even though S and D are actually connected by the network. 



 

 

 

5. Restricted flooding: Restricted flooding is quite suited to compensate for mobility of the 

destination. 

 Assume: the destination moves at a given speed v and the distance between transmitting node 

and destination is known, then a source forwards to some of or all of the nodes that are closer 

to the destination than itself. It is called geographically restricted flooding. 

 
6. Right-hand rule to recover greedy routing – GPSR: Basic idea to get out of a dead end: Put 

right hand to the wall, follow the wall. 

o Does not work if on some inner wall: will walk in circles 

o Need some additional rules to detect such circles: Use Geometric Perimeter State Routing 

(GPSR): It forwards a packet as long as possible using greedy forwarding with the “most 

forward” rule. 

- Earlier versions: Compass Routing II, face-2 routing 

- Use greedy, “most forward” routing as long as possible 

- If no progress possible: Switch to “face” routing 

• Face: largest possible region of the plane that is not cut by any edge of the graph; 

can be exterior or interior. 

• Send packet around the face using right-hand rule 

• Use position where face was entered and destination position to determine when 

face can be left again, switch back to greedy routing 

- Requires: planar graph! (topology control can ensure that) 
 

 

Figure 11.13 Example for GPSR 

7. Performance guarantees of combined greedy/face routing 

 Face routing is tasked with routing around obstacles or out of dead ends while greedy 

routing tries to make quick progress toward the destination. 

 The first combined greedy/face routing algorithm that is provably worst-case optimal 

 In order to show the worst-case optimality, quickly switching back to greedy routing 

could not be used 



 

 

 

 the Greedy and (Other Adaptive) Face Routing (GOAFR)+ algorithm that is worst-case 

optimal and at the same time efficient in the average case 

 GOAFR+ algorithm: 

o The algorithm maintains a bounding circle, centered at the destination node, which 

prevents the face search from needlessly exploring in the wrong direction. A packet 

maintains two counters, p and q. Counter p contains the number of nodes on the face 

perimeter that are closer to the destination than is the node where face search started. 

Counter q counts nodes farther away. 

8. Combination with ID-base routing: Pure position-based routing in mobile destination node, 

immediate vicinity can be problematic. Solution: by ID 

9. Randomized forwarding and adaptive node activity – GeRaF : Here investigate the 

combination of position-informed, random forwarding and nodes that switch on and off to save 

energy. 

o Goal: Transmit message over multiple hops to destination node; deal with topology 

constantly changing because of on/off node. 

o Idea: Receiver-initiated forwarding 

- Forwarding node S simply broadcasts a packet, without specifying next hop node 

- Some node T will pick it up (ideally, closest to the source) and forward it. 

o Problem: How to deal with multiple forwarders? 

-  Position-informed randomization: The closer to the destination a forwarding node 

is, the shorter does it hesitate to forward packet 

- Use several annuli to make problem easier, group nodes according to distance. 
 

10. Geographic routing without positions – GEM: Apparent contradiction: geographic, but no 

position. Use virtual coordinates and preserve enough neighborhood information to be useful in 

geographic routing. Do not require actual position determination. It has two essential parts: 

1. Use polar coordinates from a center point: Assign “virtual angle range” to neighbors of a 

node. 



 

 

 

2. Construct a spanning tree with the center point as the root: Define the radius of a node 

by the number of hops (in spanning tree) 

 

 
 Process: 

o Choose two nodes in addition to the original root. 

o Determine, for each node, the hop count of the shortest path between each of these three 

nodes(so, total three spanning tree) 

o Each node can triangulate its own position in the hop count metric. 
 

 

 Geocasting 

Geocasting: sending data to a subset of nodes that are located in an indicated. Similar to the case of 

position-based routing, position information of the designated region and the intermediate nodes 

can be exploited to increase efficiency. 

 Location Based Multicast: Geocasting by geographically restricted flooding. Define a 

“forwarding” zone: nodes in this zone will forward the packet to make it reach the 

destination zone. This zone can be defined in various ways: 

o Static zone: smallest rectangle that contains both the source and the entire destination 

region. 

o Adaptive zone: smallest rectangle containing forwarding node and destination zone. 

Possible dead ends again 

o Adaptive distances: packet is forwarded by node u if node u is closer to destination 

zone’s center than predecessor node v (packet has made progress). Packet is always 

forwarded by nodes within the destination zone itself otherwise. 

 Finding the right direction: Voronoi diagrams and convex hulls 

Goal: Use that neighbor to forward packet that is closest to destination among all the 

neighbors. Use Voronoi diagram computed for the set of neighbors of the node currently 

holding the packet. 



 

 

 

 

 

 Tessellating the plane: 

o Tessellation: of the plane is a collection of plane figures that fills the plane with no 

overlaps and no gaps. The first protocol uses a fixed tessellation of the plane into 

hexagons where each hexagon either has a “manager” in charge of it or is classified as an 

obstacle to be rooted around. 

o The second protocol is GeoGRID: The plane is divided into square grids where each grid 

has an elected gateway in charge of it. Only those gateway nodes propagate packets 

among different grids, resulting in a need to control the size of such a grid. 

 Mesh-based geocasting: 

o Geocast Adaptive Mesh Environment for Routing (GAMER): a mesh-based protocol for 

geocasting. It improves upon other mesh-based geocasting protocols by adapting the 

density of the created mesh according to the mobility of the nodes in the network. 

 Geocasting using a unicast protocol – GeoTORA: 

o GeoTORA: All nodes in the destination region act as sinks 

_ Different nodes have different heights above ground. 

_ Destination is the lowest point 

_ No local minimum 

 Trajectory-based forwarding (TBF): Think in terms of an “agent”: Should travel around 

the network, e.g., collecting measurements 

_ Random forwarding may take a long time 

_ Idea: Provide the agent with a certain trajectory along which to travel Described, e.g., by a 

simple curve .Forward to node closest to this trajectory 



 

 

 

 Further reading on geographic routing 

 Impact of localization errors: In a real system, it is unrealistic to expect that all nodes 

know their correct positions. 

 Location services: This service is important for ad hoc or Internet-based geographic 

information but rarely needed in WSNs. Such “position databases” or “location tables” can  

be organized centrally or the information can be kept distributed in structures akin to 

routing tables. 

 Location-Aided Routing (LAR): This protocol uses location information to assist in the 

flooding phases of standard ad hoc routing protocols. The protocol is similar in many 

respects to the LBM 

 Making geocasting energy aware: Geographic and Energy Aware Routing (GEAR) is a 

geocasting scheme that introduces load-splitting among neighbors when forwarding toward 

the target region, trying to equalize the energy consumption of all nodes. 

 Geographic routing without geographic coordinates: The coordinates used for  

geographic routing are purely virtual ones and are constructed without actually recurring to 

the physical location of nodes at all. Another schemes where perimeter nodes do not know 

their location and show that, even then, virtual coordinates are still useful for geographic 

routing protocols. 
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